Midterm 1, Math 110

1. Suppose that A, B and C are $n \times n$ matrices with

$$
A=B C
$$

Prove that if the rank of B equals n, then

$$
\operatorname{rank}(A)=\operatorname{rank}(C)
$$

2. Prove that if A and B are two $n \times n$ nilpotent matrices which commute with one another, then $A+B$ is likewise nilpotent.
3. Let

$$
M=\left[\begin{array}{ccc}
\alpha & \beta & c \\
-\beta & \alpha & d \\
0 & 0 & 1
\end{array}\right]
$$

where $\alpha^{2}+\beta^{2}=1$. Find a matrix L such that

$$
L M\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

for all real numbers x, y. (In fact, L will be the inverse of M.)
Hint: You have seen a matrix of type M. Ask youself how it acts on the column vector $(x, y, 1)$.
4. Suppose that M is a $3 \times n$ matrix, and suppose we perform the following set of row operations on M :

1. Interchange rows 2 and 3 .
2. Then, add row 1 to row 3 .
3. Then, interchange rows 1 and 3 .
4. Finally, multiply row 2 by -3 .

Find a 3×3 matrix E such that left-multiplication of the matrix M by the matrix E (so, we compute $E M$) has the same affect on the matrix M as performing the above row operations.
5. Write down the normal form of the 4×4 matrix $M=\left[m_{i, j}\right]$, whose entries are given by $m_{i, j}=i+j-2$.

