Math 2406, Midterm 1, Spring 2009

February 24, 2009

Instructions: You may use a calculator for the exam, but it must be nonprogrammable.
Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community.
Signed (your name):

1. Suppose that V is a vector space, and that $T: V \rightarrow V$ is a linear transformation. Now we define a funny kind of addition operation on pairs of vectors in V as follows: given $v, w \in V$, the addition will be

$$
v \oplus w=T(v+w)=T v+T w
$$

Of course, scalar multiplication will be defined in the usual way over V.
Show that the set of vectors in V, under the operation \oplus and the usual scalar multiplication, forms a vector space if and only if T is the identity map. ${ }^{1}$
2. Use mathematical induction to prove that if $T(n)$ is the sequence satisfying

$$
T(1)=0, \text { and } T(n)=2 T(\lfloor n / 2\rfloor)+n \text { for } n \geq 2,
$$

then

$$
T(n) \leq n \log _{2}(n), \text { for } n \geq 1
$$

where $\log _{2}$ denotes the logarithm to the base 2. ${ }^{2}$ Note that the first few terms are

$$
T(1)=0, T(2)=2, T(3)=3, T(4)=8, T(5)=9, \ldots
$$

[^0]3. Suppose that L_{1} and L_{2} are lines in $\mathbb{R}^{n}, n \geq 2$. Show that
$$
L_{1}+L_{2}:=\left\{a+b: a \in L_{1}, b \in L_{2}\right\}
$$
is a plane if and only if L_{1} and L_{2} are not parallel.
4. Define the following terms
a. norm induced by an inner product (give a formula).
b. X^{\perp}, where X is a subspace of some ambient vector space V.
c. scalar triple product (give a formula).
d. Explain the difference between type I and type II induction.
e. Explain what it means for two planes in \mathbb{R}^{n} to be parallel.
5. Use Gram-Schmidt to find an orthogonal basis spanned by
$$
(1,1,0,1),(1,0,2,1),(1,2,-2,2) \in \mathbb{R}^{4} .
$$

[^0]: ${ }^{1}$ By "identity map" we just mean that $T(v)=v$ for all $v \in V$.
 ${ }^{2}$ Also, the "floor function" $\lfloor x\rfloor$ for $x \geq 0$ just means "round down to the nearest integer"; so, $\lfloor 1.5\rfloor=1$ and $\lfloor 2\rfloor=2$.

