Math 2406, Midterm 1, Spring 2009

February 24, 2009

Instructions: You may use a calculator for the exam, but it must be non-programmable.

Honor Code: I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed upon me as a member of the Georgia Tech community.

Signed (your name):

1. Suppose that V is a vector space, and that $T : V \to V$ is a linear transformation. Now we define a funny kind of addition operation on pairs of vectors in V as follows: given $v, w \in V$, the addition will be

$$v \oplus w = T(v+w) = Tv + Tw.$$

Of course, scalar multiplication will be defined in the usual way over V.

Show that the set of vectors in V, under the operation \oplus and the usual scalar multiplication, forms a vector space if and only if T is the identity map.¹

2. Use mathematical induction to prove that if T(n) is the sequence satisfying

$$T(1) = 0$$
, and $T(n) = 2T(\lfloor n/2 \rfloor) + n$ for $n \ge 2$,

then

$$T(n) \leq n \log_2(n), \text{ for } n \geq 1,$$

where \log_2 denotes the logarithm to the base 2.² Note that the first few terms are

$$T(1) = 0, T(2) = 2, T(3) = 3, T(4) = 8, T(5) = 9, \dots$$

¹By "identity map" we just mean that T(v) = v for all $v \in V$.

²Also, the "floor function" $\lfloor x \rfloor$ for $x \ge 0$ just means "round down to the nearest integer"; so, $\lfloor 1.5 \rfloor = 1$ and $\lfloor 2 \rfloor = 2$.

3. Suppose that L_1 and L_2 are lines in \mathbb{R}^n , $n \geq 2$. Show that

$$L_1 + L_2 := \{a + b : a \in L_1, b \in L_2\}$$

is a plane if and only if L_1 and L_2 are not parallel.

- 4. Define the following terms
 - a. norm induced by an inner product (give a formula).
 - b. X^{\perp} , where X is a subspace of some ambient vector space V.
 - c. scalar triple product (give a formula).
 - d. Explain the difference between type I and type II induction.
 - e. Explain what it means for two planes in \mathbb{R}^n to be parallel.
- 5. Use Gram-Schmidt to find an orthogonal basis spanned by

 $(1, 1, 0, 1), (1, 0, 2, 1), (1, 2, -2, 2) \in \mathbb{R}^4.$