Midterm 2, Math 2406, Spring 2009

April 8, 2009

1. Suppose that A is a 2×2 matrix with non-negative real entries. Show that A commutes with its transpose (i.e. A^{t}) under multiplication if and only if $A=A^{t}$.
2. Compute the determinant of the following matrix

$$
\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 9 \\
3 & 6 & 10 & 12 \\
4 & 9 & 12 & 16
\end{array}\right]
$$

3. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation and $v \in \mathbb{R}^{n}$ is some vector.
a. Fix $v \in \mathbb{R}^{n}$. Show that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by

$$
f(x)=T(x)+v
$$

is a linear transformation if and only if $v=0$.
b. Mappings of the type f just considered are called "affine maps". Let $A\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ denote the space of all affine maps, where if f, g are two such maps, with associated transformations T_{1} and T_{2} and vectors v_{1} and v_{2}, then the mapping $f+g$ is defined to be

$$
(f+g)(x)=\left(T_{1}+T_{2}\right)(x)+\left(v_{1}+v_{2}\right)=T_{1}(x)+T_{2}(x)+v_{1}+v_{2} .
$$

And scalar multiplication is defined similarly. Determine

$$
\operatorname{dim}\left(A\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)
$$

4. Use Gaussian elimination to solve the system

$$
\begin{aligned}
x+2 y+3 z+4 w & =1 \\
2 x+5 y+6 z+10 w & =3 \\
3 x+7 y+9 z+15 w & =5 .
\end{aligned}
$$

5. Define the following terms.
a. linear transformation $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.
b. nullity.
c. cofactor of an $n \times n$ matrix A.
d. surjective map.
e. nullspace.
