Extra Homework, Math 2406, Spring 2009

March 9, 2009

For this problem, I want you to give a proof of the following fact, using a certain set of ideas (listed below): Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a surjective linear transformation. Prove that $m \leq n$.

Now, there is a rather easy way to do this, by simply picking any basis v_{1}, \ldots, v_{n} for \mathbb{R}^{n}, and then mapping them over to \mathbb{R}^{m} via $T\left(v_{1}\right), \ldots, T\left(v_{n}\right)$. Clearly, $T(V)$ is contained in the span of these new vectors; and so, upon extracting a linearly independent subset of them, we have a basis for \mathbb{R}^{m}, having at most n elements.

But now I want you to give a "basis free" proof of this - i.e. a proof that does not require you to pick a basis v_{1}, \ldots, v_{n} for \mathbb{R}^{n}. The tools I want you to use in doing so are as follows:

- First, use the fact that for a linear transformation $T: V \rightarrow W$, we have that

$$
\begin{aligned}
T \text { injective } & \Longleftrightarrow T \text { has a left }- \text { inverse } \\
T \text { surjective } & \Longleftrightarrow T \text { has a right }- \text { inverse }
\end{aligned}
$$

Furthermore, you get to assume in each case that the inverse function is a linear transformation.

- Second, use the fact that

$$
\operatorname{rank}(T)+\operatorname{nullity}(T)=n
$$

- Finally, use the fact that injective mappings have trivial kernels.

Now you might object to calling this a "basis free" proof, since some of the proofs of the results used above made use of bases, at least how we proved them. Maybe so... still, it is a good exercise in the use of inverses and kenels and such.

