Sample questions for Math 2406, midterm 1

February 18, 2009

1. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation that maps each subspace of dimension 2 one-to-one to some other subspace of dimension 2. Show that the only vector v for which f(v) = 0 is v = 0.

2. Suppose that X is a subspace of a vector space V. Prove that the orthogonal complement of the orthogonal complement of X is X.

3. Prove that the cross product is non-associative, as well as non-commutative.

4. Fix a vector $x \in \mathbb{R}^3$. Consider the set of all pairs P of vectors

$$(v,w) \in \mathbb{R}^3 \times \mathbb{R}^3$$

satisfying

$$v \times (x \times w) = 0.$$

Is P a subspace of $\mathbb{R}^3 \times \mathbb{R}^3$?

5. Suppose that P_1 and P_2 are two planes in \mathbb{R}^3 , and let L be a line in \mathbb{R}^3 that hits both P_1 and P_2 . Suppose that

$$|L \cap P_1| + |L \cap P_2| \ge 3.$$

Prove that $P_1 \cap P_2$ contains a line.

6. For which triples of vectors u, v, w is the scalar triple product [u, v, w] > 0? (Describe the triples.)

7. Suppose that A, B, C are elements of some vector space V. Further, suppose that

$$||A + B + C||^2 = ||A||^2 + ||B||^2 + ||C||^2.$$

Is it the case that A, B, C are all mutually orthogonal? What about if you just use two vectors A, B (i.e. does $||A + B||^2 = ||A||^2 + ||B||^2$ imply A and B orthogonal?)?

- 8. What is the difference between normal and orthogonal?
- **9.** Suppose that X is a subspace of a finite dimensional vector space V.
 - a. Prove that X is also finite dimensional.
 - b. Prove that X^{\perp} is finite dimensional.

10. Fix a vector space V. Do the set of subspaces of V form a vector space? Here, addition of subspaces is defined as follows: Given subsapces A, B, we have

$$A + B = \{a + b : a \in A, b \in B\}.$$

And, scalar mutiplication is

$$\lambda A := \{\lambda a : a \in A\}.$$