Sample questions for Math 2406, midterm 1

February 18, 2009

1. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear transformation that maps each subspace of dimension 2 one-to-one to some other subspace of dimension 2 . Show that the only vector v for which $f(v)=0$ is $v=0$.
2. Suppose that X is a subspace of a vector space V. Prove that the orthogonal complement of the orthogonal complement of X is X.
3. Prove that the cross product is non-associative, as well as non-commutative.
4. Fix a vector $x \in \mathbb{R}^{3}$. Consider the set of all pairs P of vectors

$$
(v, w) \in \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

satisfying

$$
v \times(x \times w)=0
$$

Is P a subspace of $\mathbb{R}^{3} \times \mathbb{R}^{3}$?
5. Suppose that P_{1} and P_{2} are two planes in \mathbb{R}^{3}, and let L be a line in \mathbb{R}^{3} that hits both P_{1} and P_{2}. Suppose that

$$
\left|L \cap P_{1}\right|+\left|L \cap P_{2}\right| \geq 3
$$

Prove that $P_{1} \cap P_{2}$ contains a line.
6. For which triples of vectors u, v, w is the scalar triple product $[u, v, w]>0$? (Describe the triples.)
7. Suppose that A, B, C are elements of some vector space V. Further, suppose that

$$
\|A+B+C\|^{2}=\|A\|^{2}+\|B\|^{2}+\|C\|^{2}
$$

Is it the case that A, B, C are all mutually orthogonal? What about if you just use two vectors A, B (i.e. does $\|A+B\|^{2}=\|A\|^{2}+\|B\|^{2}$ imply A and B orthogonal?)?
8. What is the difference between normal and orthogonal?
9. Suppose that X is a subspace of a finite dimensional vector space V.
a. Prove that X is also finite dimensional.
b. Prove that X^{\perp} is finite dimensional.
10. Fix a vector space V. Do the set of subspaces of V form a vector space? Here, addition of subspaces is defined as follows: Given subsapces A, B, we have

$$
A+B=\{a+b: a \in A, b \in B\} .
$$

And, scalar mutiplication is

$$
\lambda A:=\{\lambda a: a \in A\} .
$$

