Homework 5, part 2, Math 3012, Fall 2009

October 26, 2009

1. Suppose that A, B, and C are finite sets such that there exists a surjection $\varphi: A \rightarrow C$ and an injection $\psi: B \rightarrow C$, then there exists a surjection $\theta: A \rightarrow B$.
2. Suppose that $\varphi: A \rightarrow A$ is a bijection. Show that there exists an integer $n \geq 1$ such that if you compose φ with itself n times then it equals the identity mapping. That is, show that there exists $n \geq 1$ such that for all $a \in A$,

$$
\varphi^{n}(a)=(\varphi \circ \cdots \circ \varphi)(a)=a .
$$

(Hint: Note that any bijection φ is invertible. Form the sequence of mappings $\varphi, \varphi^{2}, \varphi^{3}, \ldots$. Since there are only a finite number of bijections from $A \rightarrow A$, at some point this list must cycle - i.e. you get $\varphi^{m}=\varphi^{n}$ for some pair m, n satisfying $m<n$. Now try to think about how to use this.)

