Applied Combinatorics Final Exam

September 17, 2009

1. Use mathematical induction to prove that every integer $n \geq 1$ can be written as a sum of distinct powers of 2 of the form 2^{a}, where $a \geq 0$ is an integer. For example, $1=2^{0}, 2=2^{1}, 3=2^{0}+2^{1}, 4=2^{2}, 5=2^{0}+2^{2}$, $6=2^{1}+2^{2}, 7=2^{0}+2^{1}+2^{2}$, and so on.
2. Show that if one picks 10 points in a 3×3 square, two of these points must be at most $\sqrt{2}$ apart.
3. Determine the number of strings of length 4 one can make using the letters from the string ABRACADABRA. Alternatively, such strings are all those of length 4 using only the letters A, B, C, D, and R, containing at most 4 A's, 2 B's, 1 C, 1 D, and 2 R's.

4.

a. Determine the rook polynomial for a certain chess board described as follows: The board is a subset of the squares in a 4×4 square consisting of the square

$$
(1,1),(1,2),(2,1),(2,2),(2,3),(3,3),(3,4),(4,3),(4,4)
$$

(My notation here (a, b) refers to the square in row a, column b.) Recall the recurrence formula for a rook polynomial: $R(x)=x R_{1}(x)+R_{2}(x)$, where $R_{2}(x)$ is the rook polynomial for the board after deleting a square, and where $R_{1}(x)$ is the rook polynomial after deleting that same square as well as all the squares in the same row and column.
b. Determine the number of injective functions from $A=\{1,2,3,4\}$ to itself satisfying the following restrictions: $f(1)$ cannot be 3 or $4 ; f(2)$ cannot be 4 ; and, $f(3)$ and $f(4)$ cannot be 1 or 2 .
5. Suppose A and B have 5 elements.
a. Define surjective, injective, bijective.
b. How many injective functions are there from A to B ?
c. How many surjective functions are there from A to B ? (this is easier than you think - don't use Stirling numbers.)
6. Determine the number of integers $x_{1}, x_{2}, x_{3}, x_{4} \geq 0$ satisfying

$$
20=x_{1}+2 x_{2}+3 x_{3}+3 x_{4} .
$$

7. Consider the recurrence relation

$$
X_{n+1}=3 X_{n}-X_{n-1}-X_{n-2} .
$$

It is known that for $X_{0}=X_{1}=0$ and $X_{2}=1$ that the sequence X_{0}, X_{1}, \ldots has the property that

$$
\lim _{n \rightarrow \infty} \frac{X_{n+1}}{X_{n}}=\theta
$$

for some constant $\theta>0$. Determine θ.
8.
a. Determine the number of permutations of the string

$A A B B C C C D D E E E E$.

b. Determine the number of strings of 9 digits (a digit is a number 0 through 9) having three 0's, none of which are consecutive. (So, for example, you cannot have 134005609.)
9. Determine the number of ways of partitioning the set $A:=\{1,2,3,4,5,6\}$ into 3 non-empty subsets. Recall the recurrence for Stirling numbers: $S(m, n)=$ $n S(m-1, n)+S(m-1, n-1)$.
10. Determine the number of ways of coloring the vertices of a certain graph G (defined below) using r colors, so that no two adjacent vertices (vertices connected by an edge) share the same color. The graph G is defined to be the one where we take K_{5} and delete the edge from vertex 1 to vertex 2 . Recall that the chromatic polynomial $P_{G}(\lambda)$ satisfies the recurrence

$$
P_{G}(\lambda)=P_{K}(\lambda)-P_{H}(\lambda),
$$

where H is the graph gotten by taking G and contracting along some edge e, and K is the graph gotten by taking G and removing the edge e. (Hint: Besides using the recurrence relation, another way to solve the problem is to use the fact that $P_{G}(0)=P_{G}(1)=P_{G}(2)=P_{G}(3)=0$, since G cannot be 3 -colored. If you also had $P_{G}(4)$ [which is non-zero], then you could easily determine the chromatic polynomial.)

