A few solutions to some homeworks

October 20, 2009

1 Homework 4, part 2

2.

a. We know that

$$
\operatorname{gcd}(\Delta x+1, \Delta)=\operatorname{gcd}((\Delta x+1) \bmod \Delta, \Delta)=\operatorname{gcd}(1, \Delta)=1
$$

b. Likewise,

$$
\operatorname{gcd}(\Delta+x, \Delta)=\operatorname{gcd}((\Delta+x) \bmod \Delta, \Delta)=\operatorname{gcd}(x, \Delta)
$$

Then, since x is a prime, this last gcd is either 1 or x. But since $x>7$ is prime, it has no common factors with $2,3,5$, or 7 ; so, this last gcd is 1 .
3. Let x denote the number of type A coins that Alice has, and let y denote the number of type B coins that Bob has. Then, the value of Alice's coins is $55 x$, and the value of Bob's coins is $101 y$. We seek x and y so that

$$
101 y-55 x=1
$$

We will instead just solve

$$
101 a+55 b=1
$$

To do this, we use Knuth's algorithm:

$$
\left[\begin{array}{ccc}
1 & 0 & 101 \\
0 & 1 & 55
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 46 \\
0 & 1 & 55
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 46 \\
-1 & 2 & 9
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
6 & -11 & 1 \\
-1 & 2 & 9
\end{array}\right]
$$

So, from the first line of the last box we conclude that

$$
101 \cdot 6-55 \cdot 11=1
$$

This means that

$$
y=6, x=11
$$

and this solution turns out to be unique, given the range of x and y supplied by the problem.

2 Homework 4, part 3

2. We note that if $z \equiv 1,2,4(\bmod 7)$, then $z^{3} \equiv 1 \quad(\bmod 7)$; if $z \equiv 3,5,6$ $(\bmod 7)$, then $z^{3} \equiv-1 \quad(\bmod 7) ;$ and, lastly, if $z \equiv 0 \quad(\bmod 7)$, then $z^{3} \equiv 0$ $(\bmod 7)$. What this means is that

$$
x^{3}+y^{3} \equiv 0,1,-1,2, \text { or }-2(\bmod 7)
$$

and therefore

$$
x^{3}+y^{3}+3 \text { た } 0 \quad(\bmod 7)
$$

It follows that 7 can never divide $x^{3}+y^{3}+3$ for any integers x, y.

