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1 Introduction

Here we consider the following problem.

Problem. Find integers x and y such that

5x + 13y = gcd(5, 13) = 1.

2 The basic Knuth algorithm

To solve this we begin by forming the matrix
[

1 0 5
0 1 13

]

.

The first column represents the coefficients of 5, the second column represents
the coefficients of 13, and the last column represents a linear combination of
5 and 13 determined by these coefficients. For example, if the first column
had entries a, a′, and the second column had entries b, b′, then the matrix
would look like

[

a b 5a + 13b
a′ b′ 5a′ + 13b′

]

.

Now we perform a sequence of “row operations” (just like with Gaussian
elimination) to convert the third column into one whose entries are 0 and g =
gcd(u, v), where u = 5 and v = 13 in our case. But unlike with Gaussian

elimination, the types of operations we can do are constrained to

the following:
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• We can add an integer multiple of one row to another, leaving the row
unchanged whose multiple we added to the other.

• We can interchange two rows.

• We can multiply a row by an integer multiple.

The goal is to make the numbers in the right column smaller, until we
get down to 0 and g. So, let us perform some row operations on the above
matrix to find x and y:

[

1 0 5
0 1 13

]

→

[

1 0 5
−2 1 3

]

→

[

3 −1 2
−2 1 3

]

→

[

3 −1 2
−5 2 1

]

→

[

13 −5 0
−5 2 1

]

.

Let’s discuss: In the first step we multiplied row 1 by −2 and then added
the resulting row vector to row 2; then, we multiplied row 2 by −1 and added
the result to row 1; etc.

Notice we reached a row with 1 as the right-most entry, namely the row
with entries −5, 2, and 1. This row corresponds to the relation

5x + 13y = 5 · (−5) + 13 · 2 = 1.

So, x = −5 and y = 2 is the solution we sought.
Also notice that we could actually have backed out one step earlier – that

last step with right-most column [0 1]transpose was really unnecessary, since
we got the −5, 2, 1 row in the previous iteration. In general, it is a good idea
to iterate all the way, but if you can spot that you already have the relation
you need, then you can stop the algorithm early and report the results.
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