Midterm 2, Math 3215, Summer 2009

July 14, 2009

Instructions: You must supply your own paper. You will be allowed only a simple calculator - no programmable calculators. You have one hour to complete the exam.

1. Define the following terms.
a. Say what it means for X_{1}, \ldots, X_{k} to be independent random variables.
b. Define the conditional expectation $\mathbb{E}(X \mid Y=y)$ in terms of the conditional probability density function $f(x \mid y)$, and then define $f(x \mid y)$.
c. Define the moment generating function of a random variable X.
d. Define the m th moment of a random variable X.
e. Define the marginal probability density function for a random variable X, in terms of the joint probability density function for the pair (X, Y).

2.

a. Compute the moment generating function $M_{X}(t)$ for the random variable X having the probability density function

$$
f(x)=\left\{\begin{aligned}
2 x, & \text { if } x \in[0,1] \\
0, & \text { otherwise }
\end{aligned}\right.
$$

b. Using your answer from part a, compute the 3rd moment of X. Don't just write down the answer - explain how you used moment generating functions to find it. (Note: You can easily check your answer, because the 3rd moment is easy to compute directly. This is not always the case, however, as mgf's often provide a much easier way to find moments, than direct computation.)
3. Suppose that (X, Y) is a 2D random variable with probability density function given by $f(x, y)=c x^{2} y$ when (x, y) is confined to boundary and
interior of the triangle with vertices $(0,0),(1,0),(0,1)$; and suppose $f(x, y)=$ 0 outside that triangle. Determine the constant c.
4. Suppose you roll a 4 -sided fair die (called a "D4"), and then flip two fair coins. Let X be the value of the roll (the numbers $1,2,3,4$ are printed on each side of the D 4 - the value of your roll is the number printed on the bottom side), and let Y be the number of heads that you flipped.
a. Determine the probability density function of the random variable $Z=X+Y$.
b. Determine the joint probability density function for (X, Z). (One way to do this is to make a 4×3 table of probabilities.)
c. Determine the conditional expectation $\mathbb{E}(X \mid Z=4)$.
5. Prove that if X and Y are independent random variables, then

$$
V(X+Y)=V(X)+V(Y)
$$

