Makeup midterm exam for Math 3215, Summer 2009

July 22, 2009

Instructions: You will be allowed a simple calculator - no programmable ones, however. You have one hour to complete the exam.

1. Define the following terms.
a. Percentile of a distribution.
b. Gamma function (write down the formula for it).
c. The covariance of two random variables.
d. Define a χ^{2} distribution with n degrees of freedom, in terms of independent normal random variables (like we did in class).
e. Say what it means for a collection of random variables X_{1}, \ldots, X_{n} to be "dependent".
2.

a. Compute the moment generating function $M_{X}(t)$ for the continuous random variable X having probability density function given by

$$
f(x)=\left\{\begin{aligned}
|x|, & \text { if }-1 \leq x \leq 1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

b. Using your answer from part a, compute the third moment of X. (Note: You can easily check your answer by just computing $\mathbb{E}\left(X^{3}\right)$ directly.)
3. Find the constant c which makes the following function $f(x, y)$ into a probability density function.

$$
f(x, y)=\left\{\begin{aligned}
x^{2}+c x y, & \text { if } 0 \leq x \leq 1, \text { and } 0 \leq y \leq 2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

4. Suppose that X has a Poisson distribution with parameter $\lambda=1$, and let Y be the number of tails that result upon flipping two fair coins. Suppose that X and Y are independent.
a. Determine the probability density function (write it down in a compact form) for the random variable $Z=X Y$.
b. Determine the conditional expectation $\mathbb{E}(X \mid Z=0)$.
5. Prove that if X and Y are random variables, then

$$
V(X+Y)=V(X)+V(Y)+2 \operatorname{Cov}(X, Y)
$$

