Math 3215 Alternate Midterm 2 Selected Solutions

July 27, 2009
2.
a.

$$
\begin{aligned}
M_{X}(t)=\int_{-1}^{1} e^{x t}|x| d x & =\int_{-1}^{0} e^{x t}(-x) d x+\int_{0}^{1} e^{x t} x d x \\
& =\int_{0}^{1}\left(e^{-y t}+e^{y t}\right) y d y
\end{aligned}
$$

Now we do integration by parts, letting $u=y$ and $d v=e^{-y t}+e^{y t}$, so that the integral becomes

$$
\begin{aligned}
& \left.y\left(-e^{-y t} / t+e^{y t} / t\right)\right|_{0} ^{1}-\int_{0}^{1}\left(e^{y t} / t-e^{-y t} / t\right) d y \\
& \quad=e^{t} / t-e^{-t} / t-\left.\left(e^{y t} / t^{2}+e^{-y t} / t^{2}\right)\right|_{0} ^{1} \\
& \quad=e^{t} / t-e^{-t} / t-e^{t} / t^{2}-e^{-t} / t^{2}+2 / t^{2}
\end{aligned}
$$

b. The third moment is easily seen to be 0 , by direct computation. And this can be backed up by finding the coefficient of t^{3} in the above expansion - the coefficient is

$$
\frac{1}{4!}-\frac{1}{4!}-\frac{1}{5!}-\frac{1}{5!}=0=\mathbb{E}\left(X^{3}\right) / 3!
$$

3. We just need to solve for c so that

$$
\int_{0}^{2} \int_{0}^{1}\left(x^{2}+c x y\right) d x d y=1
$$

Computing the inner integral, we find that it gives

$$
x^{3} / 3+c x^{2} y /\left.2\right|_{0} ^{1}=1 / 3+c y / 2 .
$$

Then computing the outer integral, we get

$$
y / 3+c y^{2} /\left.4\right|_{0} ^{2}=2 / 3+c
$$

So,

$$
c=1 / 3 .
$$

4.

a. Since X and Y are independent, we know that the mass function $f(x, y)$ satisfies

$$
f(x, y)=\mathbb{P}(X=x) \mathbb{P}(Y=y)=\left(e^{-1} / x!\right) \begin{cases}1 / 4, & \text { if } Y=0 \\ 1 / 2, & \text { if } Y=1 \\ 1 / 4, & \text { if } Y=2\end{cases}
$$

b. We have that

$$
\mathbb{E}(X \mid Z=0)=\sum_{x=0}^{\infty} x \mathbb{P}(X=x \mid Z=0)=\sum_{x=1}^{\infty} x \mathbb{P}(X=x, Z=0) / \mathbb{P}(Z=0)
$$

For $x \geq 1$ we have

$$
\mathbb{P}(X=x, Z=0)=\mathbb{P}(X=x, Y=0)=1 / 4 e x!
$$

Also, note that

$$
\begin{aligned}
\mathbb{P}(Z=0)=\mathbb{P}(X=0 \text { or } Y=0) & =\mathbb{P}(X=0)+\mathbb{P}(Y=0)-\mathbb{P}(X=0, Y=0) \\
& =1 / e+1 / 4-1 / 4 e
\end{aligned}
$$

So, the answer is

$$
\frac{(1 / 4 e) \sum_{x=1}^{\infty} x / x!}{\mathbb{P}(Z=0)}=\frac{1 / 4}{1 / e+1 / 4-1 / 4 e}=\frac{e}{3+e} .
$$

5. We have that

$$
\begin{aligned}
\mathrm{V}(X+Y) & =\mathbb{E}\left((X+Y)^{2}\right)-(\mathbb{E}(X+Y))^{2} \\
& =\left(\mathbb{E}\left(X^{2}\right)+2 \mathbb{E}(X Y)+\mathbb{E}\left(Y^{2}\right)\right)-\left(\mu_{X}+\mu_{Y}\right)^{2} \\
& =\left(\mathbb{E}\left(X^{2}\right)+2 \mathbb{E}(X Y)+\mathbb{E}\left(Y^{2}\right)\right)-\mu_{X}^{2}-2 \mu_{X} \mu_{Y}-\mu_{Y}^{2} \\
& =\left(\mathbb{E}\left(X^{2}\right)-\mu_{x}^{2}\right)+\left(\mathbb{E}\left(Y^{2}\right)-\mu_{y}^{2}\right)+2\left(\mathbb{E}(X Y)-\mu_{X} \mu_{Y}\right) .
\end{aligned}
$$

Now applying the basic identities

$$
\mathrm{V}(Z)=\mathbb{E}\left(Z^{2}\right)-\mu_{Z}, \quad \text { and } \operatorname{Cov}(U, V)=\mathbb{E}(U V)-\mu_{U} \mu_{V}
$$

we are done.

