
Applications of the Central Limit Theorem

October 23, 2008

Take home message. I expect you to know all the material in this note.
We will get to the Maximum Liklihood Estimate material very soon!

1 Introduction

First, we state the central limit theorem

Theorem 1 Suppose that X1, X2, ... is an infinite sequence of independent,

identically distributed random variables with common mean µ = E(X1) and

finite variance σ2 = V (x1). Then, if we let Sn = X1 + · · ·+ Xn we have that

lim
n→∞

P

(

Sn − nµ

σ
√

n
≤ c

)

= Φ(c) =

∫ c

−∞

e−x2/2

√
2π

dx.

There are many applications of this theorem to real-world problems, and
in these notes we will give two: An application to hypothesis testing, and an
application to noise cancellation.

2 Hypothesis Testing

Here we will give an example of how to use the CLT to test hypotheses. We
have already seen how to do this using a chi-square test to determine whether
to reject a hypothesized population distribution (with finitely many classes)
as being false. Here we will do this for when the population breaks down
into two classes, smokers and non-smokers.

1



2.1 The Main Problem

Problem. You read in a newspaper that 20% of Georgians smoke, and you
decide to test this hypothesis by doing a poll on 1, 000 randomly selected
Georgians with replacement (if the population you are testing is very large,
then you would not need to test with replacement). Suppose that 205 of
the responses are “smoker”, while 795 are “non-smoker”. Is the claim “20%
of Georgians smoke” unreasonable? (Obviously not, but let’s see what the
math tells us...)

Well, in order to answer this question we would need more information;
we would need to know what we mean by “unreasonable”. Here we will mean
“unreasonable” with respect to a certain statistical test which we presently
describe:

Let Xi = 1 if respondant i says he/she is a smoker, and let Xi = 0 if he/she
is not a smoker. These Xi’s are independent Bernoulli random variables. Let
Sn = X1 + · · ·+ X1,000. If our hypothesis that 20% of Georgians smoke were
correct, then µ = E(Xi) = 0.2, and V (Xi) = µ(1 − µ) = 0.16; and so, the
Central Limit Theorem would tell us that

S1,000 − 200√
1, 000 · 0.16

is approximately N(0, 1), (1)

in the sense that

P

(

S1,000 − 200

12.64911
≤ c

)

≈ Φ(c).

Now, if S∗

1,000 is the observed value of S1,000
1, and if

γ =
S∗

1,000 − 200

12.64911
, (2)

then, on the basis of the central limit theorem and (1) we wouldn’t expect
that γ is an atypical value for N(0, 1). In particular, we wouldn’t expect that
|γ| is too big; that is, we wouldn’t expect that

P (|N(0, 1)| ≥ |γ|) < 0.05

if µ = 0.2 is the true mean.

1That is, we observe S∗

1,000
smokers.
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Thus, we have the following basic statistical test

Statistical Test. Fix an α > 0, typically α = 0.05 or 0.01. Compute γ as
in (2). If

P (|N(0, 1)| ≥ |γ|) = 2Φ(−|γ|) < α,

then we reject the hypothesis that the mean value of X1 is µ; and, if this
inequality is not satisfied, we do not reject it, which is not the same as saying
we accept it.

In the example given above we have that

γ =
205 − 200

12.64911
= 0.39528,

and one can readily compute that

2Φ(−0.39528) > 0.05

Thus, we do not reject the hypothesis that 20% of Georgians smoke.

3 Noise Cancellation

Suppose that a man is driving through the desert, and runs out of gas. He
grabs his cellphone to make a call for help, dialing 911, but he is just at
the edge of the broadcast range for his cellphone, and so his call to the 911
dispatcher is somewhat noisy and garbled. Suppose that the 911 dispatcher
has the ability to use several cellphone towers to clean up the signal. Suppose
that there are about 100 towers near to the stranded driver, and suppose that
the signals they each receive at a particular instant in time is given by

X1, ..., X100,

where
Xi = S + Yi,

where S is the true signal being sent to the towers, and where Yi is the noise.
Suppose that all the noises Y1, ..., Y100 are independent and identically dis-
tributed, and further suppose they all have mean 0 and variance σ2. Further,
it is not unreasonable to assume that the noises are all normally distributed
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– i.e. they are all N(0, σ2) – though we will not need this assumption for
what follows.

The 911 dispatcher cleans up the signal by computing the average

X =
X1 + · · ·+ X100

100
= S +

Y1 + · · · + Y100

100
.

Now, by the Central Limit Theorem, we would expect that

Y1 + · · · + Y100

100
is approximately N(0, σ2/100). (3)

Of course we need to be careful here – the central limit theorem only applies
for n large, and just how large depends on the underyling distribution of
the random variables Yi. There are more powerful versions of the central
limit theorem, which give conditions on n under which (3) holds under a
precise notion of “is approximately”. At any rate, if we assume that the Yis
are all independent normal random variables, then we don’t even need the
central limit theorem, because in that case we have that X − S is exactly

N(0, σ2/100).

Now, suppose that, in fact, all the noises Yis have variance σ2 = 1. Then,
the central limit theorem in the guise (3) would be telling us that the new
noise X − S is approximately normal with variance 1/100, a 100-fold im-
provement in the noise variance gotten just using one tower!

3.1 Just How Good is the Averaging Method for Noise

Cancellation – Can we Do Better?

It turns out that not only does averaging give us a pretty good way to cancel
noise, but it is, in some sense, the best thing we could possibly try. The
proper language is that taking the average X gives us a maximum liklihood
estimate for the signal S, which is the same as the expected value of Xi for
all i = 1, ..., 100. Let us make this more precise:

Maximum Liklihood Estimates. Suppose X is some random variable
having a distribution that depends on a list of unknown, underlying parame-
ters θ1, ..., θk.

2 Let f(x; θ1, ..., θk) denote the pdf for X, given the parameters

2For example, perhaps X is normal with mean µ and variance σ2, where neither µ nor

σ2 are known, in which case θ1 = µ and θ2 = σ2.
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θ1, ..., θk. Suppose we make n independent observations of our random source
X, and suppose these observations are the values x1, ..., xn. Then, the likli-
hood value of this observation is

L(x1, ..., xn; θ1, ..., θk) =

n
∏

i=1

f(xi; θ1, ..., θk).

We say that θ̂1, ..., θ̂k are maximum liklihood estimates for θ1, ..., θk, given
the observations x1, ..., xn, if these values θ̂i maximize L(x1, ..., xn; θ1, ..., θk).
Note that the θ̂is which maximize L may not be unique (there may be more
than one global max).

Question. Why the word ‘liklihood’, and not, say, ‘probability’? To answer
this, note that in the discrete setting it is easy to describe what the liklihood
function computes: It is just the probability that given particular values for
θ1, ..., θk, the observed values for some random variable X were x1, ..., xn.
So, in this case ‘liklihood’ and ‘probability’ coincide. However, as we well
know, the pdf for a continuous random variable X does not give us probability
values when we plug in varlues for x, and hence the use of the word ‘liklihood’.

In our case, let us suppose that the received signals Xi are, in fact, normal,
with mean S, and variance σ2; that is to say, the noises Yi are N(0, σ2).
Now suppose that we have definite values for these observations (that is,
our observed signals are ‘instantiated’), and suppose that those values are
x1, ..., x100. The liklihood function here is

L(x1, ..., xn; S, σ2) =
1

(2π)50σ100
exp

(

−[(x1 − S)2 + · · · + (x100 − S)2]/2σ2
)

.

If we seek S which maximizes this (for any given value for σ2), we can ignore
the factor (2π)50σ100, and we maximize the log of the remaining exponential
factor; thus, we just need to maximize

−(x1 − S)2 + · · ·+ (x100 − S)2

2σ2
.

We can ignore the σ2; so, we maximize

−(x1 − S)2 + · · ·+ (x100 − S)2

2
. (4)
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Taking a derivative with respect to S and setting equal to 0 we have

(x1 + · · · + x100) − 100S = 0.

So,

S =
x1 + · · ·+ x100

100
,

which is our sample mean. The fact that the expression (4) is a down-turning
parabola means that, indeed, this is a maximum.

Thus, we see that by averaging we obtain a maximum liklihood estimate
for S, and therefore, in some sense, this is the best we could hope to do to
recover S.
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