Practice problems for Midterm 2, Math 3215, Summer 2009

July 10, 2009
1.
a. Determine the moment generating function of the exponential random variable X whose probability density function (pdf) is $f(x)=3 e^{-3 x}$.
b. Using your answer from part a, determine the sixth moment of X; that is, determine $\mathbb{E}\left(X^{6}\right)$.
2. Suppose that (X, Y) is a two-dimensional random variable having probability density function

$$
f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2} .
$$

a. Find the marginal probability density function $g(x)$ for the random variable X.
b. What is the expectation of the random variable $Z=X+Y$?
c. What is the expectation of $W=X Y$?
3. Suppose that the number of particles that a radioactive source emits in a given one minute time window has a Poisson distribution with parameter $\lambda=10$. Determine the variance of the distribution of the number of particles emitted in three minute time windows.
4. Recall that X is a chi-squared random variable with n degrees of freedom if its pdf is given by

$$
f(x)=\left\{\begin{aligned}
\frac{x^{n / 2-1} e^{-x / 2}}{2^{n / 2} \Gamma(n / 2)}, & \text { if } x \geq 0 \\
0, & \text { if } x<0
\end{aligned}\right.
$$

where, recall, the gamma function is given by

$$
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t
$$

Now suppose that X has n degrees of freedom, where n is even, while Y has $2 n$ degrees of freedom. Assume $n \geq 2$. Which of the following is more probable (defend your answer)?

$$
\mathbb{P}(X>2 n) \text { or } \mathbb{P}(Y>2 n)
$$

5. Can you think of an example of where $\mathbb{E}(X+Y) \neq \mathbb{E}(X)+\mathbb{E}(Y)$?
