Math 3215, Homework 5, Fall 2011

October 31, 2011

1. Let the joint pdf of X and Y be

$$
f(x, y)=1 / 4,(x, y) \in S=\{(0,0),(1,1),(1,-1),(2,0)\}
$$

a. Are X and Y independent?
b. Calculate $\operatorname{Cov}(X, Y)$ and find ρ.
2. Let W equal the weight of laundry soap in a 1-kilogram box that is distributed in Southeast Asia. Suppose that $P(W<1)=0.2$ and $P(W>1.072)=0.08$. Call a box of soap light, good, or heavy depending on whether $\{W<1\},\{1 \leq W \leq 1.072\}$, or $\{W>1.072\}$, respectively. In $n=50$ independent observations of these boxes, let X equal the total number of light boxes and Y the number of good boxes.
a. What is the jpdf of X and Y ?
b. Give the name of the distribution of Y along with the values of the parameters of this distribution.
c. Given that $X=3$, how is Y distributed conditionally (i.e., find $g(y \mid x=3)$, the conditional pdf).
d. Determine $E(Y \mid X=3)$.
e. Find ρ, the correlation coefficient of X and Y.
3. Prove that if X and Y are Poisson random variables, having parameters $\lambda_{1}>0$ and $\lambda_{2}>0$, respectively, then the random variable $Z=X+Y$ is Poisson with parameter $\lambda_{1}+\lambda_{2}$.
4. If X is an $N(650,625)$ random variable (normal with mean 650 and variance 625), find
a. $P(600 \leq X<660)$.
b. A constant $c>0$ such that $P(|X-650| \leq c)=0.9544$.
5. Let $Y=X_{1}+\cdots+X_{15}$ be the sum of a random sample of size 15 from the distribution whose pdf if $f(x)=(3 / 2) x^{2},-1<x<1$. Using the Central Limit Theorem, approximate

$$
P(-0.3 \leq Y \leq 1.5)
$$

6. Suppose that $Z=\left(X_{1}^{2}+X_{2}^{2}+X_{3}^{2}\right)^{1 / 2}$, where the X_{i} 's are independent $N(0,1)$ random variables. Determine $P(Z \geq 2)$.
