

Homework 1, Math 3225

September 10, 2010

1. Recall that events A_1, \dots, A_k are independent if for every non-empty subset S of $\{1, \dots, k\}$ we have

$$\mathbb{P}(\cap_{s \in S} A_s) = \prod_{s \in S} \mathbb{P}(A_s). \quad (1)$$

As a consequence of this, it turns out that this implies, and is equivalent to, the statement

Claim. For $i = 1, 2, \dots, k$ we have that for any set B in the σ -algebra generated by all the sets A_j , $j \neq i$,

$$\mathbb{P}(A_i, B) = \mathbb{P}(A_i)\mathbb{P}(B).$$

In the special case $i = 1$ this would be saying that for any $B \in \sigma(A_2, \dots, A_k)$ – i.e. B is any set gotten by doing any number of intersections, unions and complements (which will turn out to be finite in number, since $k < \infty$) of the events A_2, \dots, A_k – we must have that $\mathbb{P}(A_1, B) = \mathbb{P}(A_1)\mathbb{P}(B)$.

This equivalence is somewhat tricky to prove; and to give you a taste of what is involved, your first problem will be to prove the following: Suppose that A, B, C , and D are independent events (using the (1) definition above). Show that

$$\mathbb{P}(A \cap (B \cup C \cup D)) = \mathbb{P}(A)\mathbb{P}(B \cup C \cup D).$$

2. Show that the map

$$\varphi : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$$

which sends

$$(a, b) \rightarrow a + \frac{(a + b - 2)(a + b - 1)}{2},$$

is a bijection. Here, \mathbb{N} is the set of positive integers (i.e. Natural numbers). Hint: Draw the 5×5 square of numbers (a, b) , $1 \leq a, b \leq 5$, and see where (a, b) gets sent.

3. In a certain “pick 3” lottery a person selects a number from among 1000 possibilities $\{000, \dots, 999\}$. Let us suppose each number is equally likely. Now suppose 500 people play the game, and each picks a number. From the lottery commission’s perspective, the worst thing that could happen is if the 500 people conspire and each picks a different number. If they do this, then the chance that at least one of them wins (and splits his winnings with the other 499 people he colludes with) is obviously $1/2$. Now suppose the 500 people *don’t* conspire, and each picks his or her number independently of the other players. Show that the probability that at least one of the players picks the winning number is approximately $1 - 1/\sqrt{e}$. In working this problem, state what your sample space is, what the probability measure is, and any assumptions you make.