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1 Expectation and Variance

1.1 Definitions

I suppose it is a good time to talk about expectation and variance, since they
will be needed in our discussion on Bernoulli and Binomial random variables,
as well as for later disucssion (in a forthcoming lecture) of Poisson processes
and Poisson random variables.

Basically, given a random variable X : § — R, having a pdf f(x), define
the expectation to be

E(X) = /_ : o f ()da.

In other words, it is kind of like the “average value of X weighted by f(x)”.
If X is discrete, where say X can take on any of the values aq,as, ..., we

would have
E(X) = Zaip(ai)u

where p here denotes the mass function.

More generally, if v : B(R) — [0,1] is a probability measure associated
to a random variable X (continuous, discrete, or otherwise), so that for
A € B(R) we have

P(X € A) = /R dv(z) = v(A),



we define
E(X) = /Rl’dl/(l’).

Of course, we really haven’t worked much with the sort of r.v.’s for which
such a v cannot be relized in terms of pdf’s, but I thought I would point it
out anyways.

We likewise define the variance operator V(X)) to be

V(X) = /(1’ — 1) f(x)dx, where p = E(X).
R
If X is discrete, then

V(X) == (ai — p)’plas);
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and, of course, there is the even more general version

V(X) = /R (& — p)du(x).

We know that the expectation is a kind of average, and now I want to
give you a feel for what the variance is: Basically, it is a measure of how
“flat” the pdf is — the flatter it is, the more the values of X away from the
mean p get weighted; and therefore the larger the variance V(X) is. For
example, consider the two random variables X and Y having pdf’s f(z) and
g(x), respectively, given by

o) = {1/2, if z € [-1,1];

0, ifx<-—1lorxz>1.

and
- 1/4, if x € [-2,2];
- 0, ifz<—-2o0rxz>2

In some sense, g(z) is “flatter” than f(x), since the total mass of 1 (the
integral of f(z) and g(x) over the whole real line) gets spread out over an
interval of width 4 in the case of g(z), but only over an interval of width 2
in the case of f(x). So, the variance of Y should be larger than the variance
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of X. Let’s check our intuition: First, it is a simple calculation to show that
E(X)=E(Y) =0, so that

1 1

V(X) = /_(x—O)zf(x)dx _ /_(x2/2)dx _ x3/6’1_1 1y

1 1

V(Y) = / (y = 0)*g(y)dy = / (y*/4)dy = y3/12‘2_2 = 4/3.

-2 -2

Our guess was indeed correct.

You may wonder to yourself: Why don’t we define the variance as just
E(|X — pl]), instead of E((X — p)?)? There are several reasons for this. One
reason is that (z — u)? is differentiable, and therefore can be analyzed using
the methods of calculus; whereas, |z — | is not. And another reason is that
there are certain nice identities for computing the variance when squares are
used that lend themselves to something called the “second moment method”,
which we will discuss in due course.

1.2 The mean and variance may not even exist!

There are some random variables that are so spread out that even the ex-
pected value E(X) does not exist. For example, suppose that X has the

pdf
[ 122, if @ > 1
fl) = { 0, otherwise.

First, let’s confirm it is a valid pdf:

/Rf(:):)d:)s - /loodx/(2x3/2) | T

1

And now, for the expectation we get

E(X) = /001/(2\/5)0[93 = o0.
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2 Bernoulli and Binomial random variables

A Bernoulli random variable X is one that takes on the values 0 or 1 according

to
o p, if j=1,
PX=J) = { g=1-p, ifj=0
Things only get interesting when one adds several independent Bernoulli’s
together. First, though, we need a notion of independent random variables:

We say that a collection of random variables
XX, :§ = R
are independent if for every sequence Ay, ..., A, € B(R) we have
P(X; €A, Xo€ Ay, .., X, €A,) =P(X;€A)P(Xy€ Ay)---P(X, € A,).

This may seem a little strange, since before when we defined independent
events we considered all possible subsequences 1 < i1 < --- < 4, < n of
indices when intersecting our events, whereas here we work with all the ran-
dom variables. But, in fact, we have gotten around this issue in the above,
because by letting some of the A; = R itself, we get that X; € A, = R
conveys no information; so, if in fact we have that A; = R for ¢ # iy, ..., iy,
then

]P)(Xl € Al, . X, € An) = ]P)(X“ S Ail, . sz S Azk)

Now we arrive at the following claim:

Claim. Let X = X; 4+ ---+ X,,, where the X,’s are independent Bernoulli
random variables having the same parameter p. Then, X has a Binomial
distribution with parameters n and p; that is,

P(X =2x) = <Z)pmq”_:‘”, where g =1—1p

To see this, let us begin by letting S = {(¢1,...,t,) : t; =0 or 1}; that
is, § is the sample space associated with the collection of random variables,

4



where t; corresponds to the value of X;; so, the event X; = 1 corresponds to
the 2"~ vectors

(1,0,0,...,0), (1,1,0,...,0), (1,0,1,0,...,0), (1,1,1,0,...,0), ...

Basically, all those vectors with first coordinate 1.
We just let ¥ = 2%, and then the probability measure we put on ¥ is
built up from the measure applied to singletons via

P({(t:L?’tn)} = pt1+“'+tnqn—t1—..._tn'

One can check that this is exactly the measure assigning the events X; = 1
probability p, while keeping the X;’s independent random variables.

Now, the event E € ¥ corresponding to X; + --- + X,, = x is made up
out of (Z) singletons, where all these singletons have the same probability

T N—I.

p*q""; and so, we are led to

P(E) = (n) P

T

by writing E as a disjoint union of singletons.

3 Facts about Binomial random variables
If X is a Binomial random variable with parameters n and p, then
E(X) = np, V(X) = npq.

A very simple way we could show this is to use something called the “linearity
of expectation”, along with the fact that X ~ X; + ---+ X,,, where the
notation X ~ Y means that X and Y have the same distribution. However,
this requires some facts about multi-dimensional random variables that we
have not yet covered, and so we will take a more low-brow approach for now.
Basically, I will give two different low-tech ways to prove the identity above
for E(X); the identity for V(X)) follows from similar, though more involved,
manipulations.



3.1 Way 1: The derivative trick

Treat p as some varialbe, and let ¢ be a constant which may or may not
depend on p (i.e. we suspend using the identity ¢ = 1 — p). Then, we are led

to the function .
n . .
= 5 (Y
=0 ™

Now take a derivative with respect to p, so as to introduce an extra factor of
7 into each term in the sum; that is,

dh(p —~ (0 . i
W(p) = dmp) _ Z(.)Jp’ g,
— \J
J
Inserting an extra factor of p into each term, to give
/ . - n - on—j
ph'(p) = Z(j.)ﬂ?’q :
=0

we see that this is the expectation of a Binomial r.v. with parameters n and

p.
Now, by the binomial theorem we know that

(p+9" = hp),

from which we deduce
W(p) = np+q" "
At this point we now revert to thinking of ¢ = 1 — p, so that

and therefore that the expectation of our Binomial r.v. is np, as claimed.

3.2 Way 2: Rewrite the binomial coefficient, and rein-
terpret

Observe that



So, if X is our Bernoulli r.v., we have that

nn,-n_j - n—j n—1 (n=1)=(j~1)
E(X) =) ;)i :Z ir'q —npz j_lp] ¢

5=0 j=1

Renumbering by seeting k = j — 1 gives

n—1

n—1 L

) = ”pz< i )pkq(" Dk,
k=0

And now, one may either interpret this last sum probabilistically in terms
of a Binomial r.v. with parameters n — 1 and p, or one can just apply the
Binomial theorem — either way, we see that it equals 1, giving E(X) = np
once again.



