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1 Probability density functions and probabil-

ity measures

We defined a probability density function (pdf for short) as a function f :
R → [0,∞) satisfying ∫

R

f(x)dx = 1.

(Of course, this means that f must be Lebesgue-integrable, and hence mea-
surable.) Likewise, we defined a “probability mass function”, which I will
also refer to as a pdf, as a function p : {a1, a2, a3, ...} → [0, 1] satisfying

∑
i

p(ai) = 1.

So, mass functions are analogues of density functions for discrete (finite, or
possibly countably infinite) sets of real numbers.

What a pdf gives us is a probability measure for subsets of the real num-
bers. Specifically, suppose A ∈ B(R). Then, we can define

P(A) :=

∫
R

1A(x)f(x)dx =

∫
A

f(x)dx. (1)

And we can do the same in the discrete case, for if A ⊆ {a1, a2, ...}, then we
can define

P(A) :=
∑
ai∈A

p(ai).
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There is a way to unify both of these types of measures: Basically, let
µ : B(R) → [0,∞). Then, for A ∈ B(R) we use the notation

∫
R

1A(x)dµ(x), or, alternatively

∫
R

1A(x)µ(dx).

to denote µ(A). Once we have a way to define integrals for such indicator
functions, we can do so for linear combinations of indicator functions; and
then we can generalize further, producing a kind of integral “weighted by
µ”. To see that this unifies both the probability density function and the
probability mass function, first note that if f(x) is a pdf, then we can just
define µ using (1), letting µ(A) = P(A). The discrete case is more difficult,
because we have to go from a mass function defined on a discrete (but possibly
countably infinite) set to a measure defined on B(R): Well, what we can do
is just let, for A ∈ B(R),

µ(A) :=
∑
ai∈A

p(ai).

(which is weird, since we are relating discrete sums to measure on arbitrary
subsets of B(R).)

2 Random variables

In general, sample spaces are not collections of numbers that we can measure
using pdf’s. What we need is a bridge from arbitrary sample spaces to the real
numbers; and so-called “random variables” provide that bridge. Basically, a
random variable is a mapping

X : S → R,

such that X is measurable, where here S denotes a sample space for which
we have a sigma algebra Σ. Basically, the measurability requirement means
that for each A ∈ B(R) we have that X−1(A) ∈ Σ.

Why would we want X to be measurable? Well, we want to be able to
compute probabilities like, say,

P(X = 4), or P(X < −1), or, ingeneral, P(X ∈ A), where A ∈ B(R).
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So we need these events like “X = 4” and “X < −1” to correspond to some
things that we can measure with P; and the only things that P can measure
are those elements of Σ (which, recall, are subsets of S) – hence the need to
have X−1(A) ∈ Σ.

What is a random variable? It may seem a little confusing at first, but
random variables are not really “variables” at all, nor are they “random” for
that matter. Basically, probabilists have removed ‘time’ from the picture,
so that r.v.’s, like every other mathematical object, reside in some eternal
Platonic realm: As we said, r.v.’s are maps or functions; but in many cases
to wrap our heads around them it’s best to think of them as being like
“input data from some experiment, that can change each time we perform
the experiment.”

It is customary to associate to X a pdf (or more generally, a measure)
f(x), so that

P(X ∈ A) =

∫
A

f(x)dx.

3 Passing from one r.v. to another

Consider the following problem: Suppose that X is a r.v. having pdf

f(x) = e−x2/2/
√

2π.

Let Y = 2X − 3. Find the pdf for Y .

To address this, we introduce the notion of a “cumulative distribution
function”. Usually, we denote this with CAPITAL LETTERS; i.e. if f(x)
is the pdf, then F (x) is the cdf – but, because f(x) in the above problem
happens to correspond to a special distribution called a Gaussian or “normal
distribution”, we use the symbol Φ(x) instead. In general, though, a cdf is a
function F (x) defined by

F (x) :=

∫ x

∞

f(x)dx.

Or, if we have an r.v. to begin with, where no mention is made of f(x), we
define it as

F (x) := P(X ≤ x).
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Now, if we are in the former case (we have f(x)), then it turns out that

F ′(x) = f(x).

In other words, to work out a pdf, you can start with a cdf and take its
derivative.

Let’s now apply this to the above problem: Let G(y) denote the cdf for
Y , so that

G(y) = P(Y ≤ y).

Next, rewrite this in terms of X, so that

G(y) = P(Y ≤ y) = P(2X − 3 ≤ y) = P(X ≤ (y + 3)/2) = Φ((y + 3)/2)

=

∫ (y+3)/2

−∞

e−x2/2/
√

2πdx.

Now, taking a derivative, we find that the pdf for Y , denote by g(y), say,
satisfies

g(y) = G′(y) =
dG(y)

dy
= e−(y+3)2/8/2

√
2π.

The extra factor of 2 here in the denominator comes from the chain rule
when we differentiate (y + 3)/2 w.r.t. y.
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