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1 Null and alternate hypotheses

In scientific research one most often plays off some hypotheses against certain
others, and then one performs an experiment to decide whether to reject or
not reject certain of these hypotheses. Notice that I said “reject” or “not
reject”; that is, I didn’t say, “reject” or “accept”. By saying that I “reject”
or “not reject”, I am actually saying less than if I said “reject” or “accept”;
and in saying less, the conclusion has a greater chance of actually being true,
though often more daring individuals will actually say “accept” instead of
“not reject”.

Scientific expierments could potentially involve testing many hypothe-
ses at once, but typically one only works with two of them, called the null

hypothesis, denoted H0, and the alternate hypothesis, denoted Ha.
The null hypothesis is so named because it represents the “default po-

sition” or “prior belief”. An example would be the hypothesis “the drug
has no effect” in testing a drug for efficacy against some disease, and an-
other example would be that “all electrons have almost exactly the same rest
mass”.

It is actually slightly inaccurate to call the null hypothesis a “default
position”, because prior to setting up the experiment it may be that the
hypothesis hasn’t even been considered before. It is only “default” in the
sense that if the hypothesis were true it would have little obvious significance
to our expanding body of scientific knowledge (though maybe on deeper
reflection it could have significance). This is perhaps why sometimes one
hears the phrase “hypothesis of no consequence” when defining H0.

The alternate hypothesis Ha basically represents what we would like to
be true, since it would have some obvious significance if it were true. For this
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reason we hope that the outcome of a scientific experiment indicates that
we should reject H0 (or even that we should accept Ha). By negating the
above two examples of null hypotheses, we arrive at two good examples of
alternate hypotheses: Ha might be the claim that “the drug does have an
effect” against some disease; or, it might be the claim that “not all electrons
have the same rest mass”.

Often, null hypotheses are written in terms of parameters related to the
experiment; for example, it might be H0 : µ = µ0. This may seem a little
strange since, of course, in many cases we wouldn’t expect to be able to
measure some parameter µ accurately enough to say that it has value exactly

equal to µ0; however, within the limits of the test we may not be able to
exclude this possibility, so we would continue to accept (or not reject) that
µ = µ0.

In deciding whether or not to reject the null hypothesis, we must de-
cide upon what test statistic to use. A test statistic is just some function
f(X1, ..., Xn) of a given data sample X1, ..., Xn, which are random variables,
and therefore, numbers. In many scenarios there are standard ones that are
used, like the “χ2 statistic” or the “student-t statistic”, which we will discuss
below.

Once we have chosen the test statistic, we then choose a region of the real
line called the rejection region (abbreviated RR) so that we “reject H0” if
f(X1, ..., Xn) ∈ RR; and otherwise, we don’t reject H0 if f(x1, ..., Xn) 6∈ RR.
We will see some examples of test statistics and rejection regions below.

1.1 Type I and Type II errors

A type I error occurs when we reject the null hypothesis when it happens to
be true; and a type II error occurs when we fail to reject the null hypothesis
(or accept the alternate hypothesis) when it happens to be false. I like to
think of a type I error as being the sort that credulous people make – they
reject conventional wisdom in favor of any new thing that comes along. And,
I like to think of a type II error as being the sort that overly conservative
people make – they become too set in their ways, and fail to discard old ideas
that turn out to be wrong.

It is standard to use the Greek letters α and β to indicate the proba-
bilities of making type I and type II errors, respectively, subject to certain
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assumptions. It often helps to write these in probability language as follows:

α = P(rejecting H0 | H0 is true),

and
β = P(not rejecting H0 | H0 is false).

What assumptions? Typically, it is that the data X1, ..., Xn fits some
particular type of distribution, like maybe that they are sampled from a
normal distribution with some unknown mean and variance. This may seem
a little upsetting at first, since we tend to think of the methods of science are
precise, quantitative, and foolproof – that the only source of error there could
be is in the data itself (e.g. measurement error); this isn’t so, unfortunately.
But all empirical subjects must begin with at least some assumptions.

1.2 An uncertainty principle

Science tends to be conservative. And as such, it tends to focus much more
on trying to keep α small, within practical limits; it prefers to keep the
probability of accepting newfangled false claims low, through keeping the
probability of making a type I error low.

There is a downside, however, in the form of an uncertainty principle:
you can only make α smaller at the expense of making β larger; and you can
only make β smaller at the expense of making α larger. This is what I mean
by an “uncertainty principle. Let’s see why it is true: in order to make α

smaller, you basically must shrink the size of the rejection region, in order
that it is less likely that the test statistic f(X1, ..., Xn) falls inside it. In so
doing, however, you increase the probability of failing to reject H0, which
opens you up to making more type II errors.

2 Some examples

2.1 The voter example from earlier in the semester

Suppose you have a population that is divided into k different categories.
Further, you hypothesize that the percent of individuals in the jth category
is pj. Note that p1 + · · · + pk = 1. You now wish to test this hypothesis by
picking a large number N of individuals with replacement (i.e. you may pick
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the same person more than once), and checking to see which category they
fall into. Suppose that the number observed in category j is Xj. Note that
E(Xj) = pjN and that X1 + · · ·+ Xk = N .

Define the parameter

E =

k∑

j=1

(Xj − pjN)2

pjN
. (1)

Then, E ≥ 0, and will be “large” if too many of the classes contain a number
of individuals that are far away from the expected number.

In order to be able to check our hypothesis that “pj percent of the popula-
tion belongs to class j, for all j = 1, 2, ..., k”, we need to know the probability
distribution of E, and the following result gives us this needed information:

Theorem. For large values of N , the random variable E given in (1) has
approximately a chi-squared distribution with k − 1 degrees of freedom.

And now our example problem:

Example: Suppose we read in a newspaper that likely voters in Florida
break down according to the following distribution: 40% will vote Repub-
lican, 40% will vote Democrat, 10% will vote Independent, 5% will vote
Libertarian, and 5% will vote “other”. We decide to test this, and so we let
our null and alternate hypotheses be:

H0 : The newspaper is correct, and Ha : The newspaper is incorrect.

To test H0 we use the standard χ2 test as follows: suppose that we ask
N = 10, 000 (polled with replacement) likely Florida voters which group they
will vote for. We let X1, X2, X3, X4, and X5 denote the number that answered
Republican, Democrat, Independent, Libertarian and Other, respectively.
We let

p1 = 0.4, p2 = 0.4, p3 = 0.1, p4 = 0.05, and p5 = 0.05.

We will then use the function E above as our test statistic; and let us suppose
that we use the following upper-tailed rejection region:

RR : [χ2

0.05,4, ∞).
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That is, if E ∈ RR, then we reject H0.
In this case, α = 0.05; but, we cannot actually compute a value for β, since

to do so we would need to know the true population percentages of people
who vote Republican, Democrat, Independent, Libertarian, and Other.

Let us suppose that the following is the result of our poll:

4,200 will vote Republican;
3,900 will vote Democrat;
1,000 will vote Independent;
700 will vote Libertarian; and,
200 will vote “other”.

So, we have that

E =
(4200 − 4000)2

4000
+

(3900 − 4000)2

4000
+ 0 +

(700 − 500)2

500
+

(200 − 500)2

500
= 10 + 2.5 + 8 + 180 = 200.5.

And one can check that this certainly lies inside the rejection region; so,
we reject the null hypothesis H0.

2.2 An example involving normal random variables with

unknown mean and variance

Recall the following theorem.

Theorem. Suppose that X1, ..., Xk are i.i.d. N(µ, σ2) random variables.
Let X represent the sample mean, and let σ̂ represent the sample standard
deviation. Then, we have that

t =
(X − µ)

√
k

σ̂

has a Student-t distribution with k − 1 degrees of freedom.

We will use this in addressing the following problem.

Example: You want to test the theory that the average resistivity of
Atlantic Ocean seawater is 0.2 ohm-meters. Suppose you know in advance
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that resistivity of ocean water is normally distributed (a BIG assumption,
but what can you do?), and let µ and σ2 denote the corresponding mean and
variance of this distribution. In this case, we have that

H0 : µ = 0.2, and Ha : µ 6= 0.2.

Let us suppose that we do an experiment by randomly selecting 6 assays
of Atlantic Ocean water. We will use the t function in the above theorem
with k = 6 and µ = 0.2 as our test statistic, and we will use the following
two-tailed rejection region:

RR : (−∞, t0.05,5] ∪ [−t0.05,5,∞).

where here we use the notation tθ,5 to denote the θ percentile of a student-t
distribution with 5 = 6 − 1 degrees of freedom; note that it is percentile and
note upper percentile as we used in the χ2 test.

The percentile value t0.05,5 can be computed using the following Maple
commands:

>with(Statistics):

> Percentile(StudentT(5), 5, numeric);

-2.015042560

So,
RR : (−∞, −2.015042560] ∪ [2.015042560,∞).

It is obvious from the way we set things up that α = 0.1; and, again, we
cannot compute a particular value for β unless we know something about µ.
We can, however, determine values for β(µ) – that is, we can determine the
probability of making a type II error, given that we know some particular
value for µ. An exercise for YOU: determine β(0.18) and β(0.22) using σ = 1.

Suppose that the following are the resistivities of our 6 assays in ohm-
meters

0.26, 0.15, 0.25, 0.22, 0.18, 0.20.

Then, we will have that

t =
(0.21 − 0.20)

√
6

0.04335896677...
= 0.564932...

Clearly, since this does not lie in the RR, we do not reject H0.
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2.3 The p-value of a test

It is common nowadays to report in a scientific paper not only whether H0

was rejected or not, but also the p-value associated with the outcome. The
p-value is often called the “observed significance level”, and is the smallest
value that α could be in order that H0 is rejected. That is, if p ≤ α, then we
reject H0; and if p > α, then we do not reject H0.

Two more ways of thinking about the p-value: 1) it is the value that α

would need to be in order that we are right on the boundary between rejecting
and not rejecting H0; and 2) intuitively, it is measuring the probability that
H0 could be true, subject to the usual underlying assumptions (like that the
Xi are sampled from a particular distribution).

Typically we want to report p-values for when H0 was rejected; so, let us
take a look at the elections example: there, we found that E = 200.5, and
so the rejection region would have to be [200.5,∞) for H0 to just barely be
rejected. The probability associated to this, assuming E ∼ χ2
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using Maple again:

> with(Statistics);

> 1- CDF(ChiSquare(4),200.5);

2.93341306*10^(-42)

So, the p-value is incredibly close to 0. It is unusual for it to be this small;
typically, p-values are of size 0.05 or so. Sometimes, when p-values are as
small as we just found, one will just write “p < 0.01”.
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