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1 Set Theory

1.1 Basic Definitions

In mathematics a set is a collection of elements or objects. We also allow S
to have no objects, and we call this special kind of set the empty set, and
denote it by 0.

If S denotes a set, the symbol € is used to express when an object is a
member of S: The string of symbols “a € S” is shorthand for the statement
“a is a member of the set S”. Some common sets that you are no doubt
familiar with include 7Z, the set of integers; N, the set of positive integers;
Q, the set of rational numbers; R, the set of real numbers; and C, the set of
complex numbers. We also have the notion of a subset and superset: Given
sets A and B, if we have that every element a € A is also an element of B
— that is, a € B — then we say that A is a subset of B, and we denote it by
A C B. We say that the sets A and B are equal, and we denote it by A = B,
if AC B and B C A; also, if A is not equal to B, we write this as A # B. If
Ais a subset of B and A # B, then we say that A is properly contained in
B or that A is a proper subset of B, and we write this as A C B. We also
use the notation B O A and B D A, and it is hoped that you can deduce its
meaning. One final thing to note is that the empty set is always a subset of
A; that is, ) € A. If A is not the empty set, then () is a proper subset of A,
which means we would use the notation § C A.

One common way to define a set is to list out the elements contained
within it: For example, we could say that S = {1,2,3,4}; that is, S is the
set of all integers between 1 and 4, inclusive. For sets that have too many



elements to list out, but which can be algorithmically generated, one uses
the notation
S = {s : ..},

where the identifies the properties satisfied by s. This notation for S
is usually read out loud as “S' is the set of all elements s such that ...”. For
example, if we let
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S ={neZ : n/2e€Z},

one reads this as “S is the set of integers n such that n/2 is also an integer”.
It is obvious that this definition of S is a roundabout way of saying that S
is the set of even integers.

Sets do not have to be just numbers, but can be any collection of objects
we desire to work with; for example, the set Z[z] usually means the set
of polynomials in the variable z, so this set is all polynomials of the form
apz® 4+ ap_12% 1 + - 4+ ag, where the a;’s are integer and k can be any non-
negative integer. Notice here that not every element of Z[x] is a number.

There is a problem when one allows too much freedom for how one defines
sets algorithmically, and this is perhaps best illustrated by something called
Russell’s paradox, in honor of the famous British Philospher and mathemati-
cian Bertrand Russell: First note that the elements of a set S can themselves
be sets; for example the set {{1,2},{1,2,{3,4}},5} has three “elements”,
namely the sets {1,2}, {1,2,{3,4}}, and the number 5. Notice here that the
second element is itself a set. The paradox comes in when we define sets that
contain themselves.

Russell’s Paradox. Let S be the set of all sets that are not contained in
themselves; that is,
S ={Taset : T¢gT}.

This looks like a perfectly valid mathematical statement, albeit a complicated
one. Another way of stating S is that

TeS if and only if T ¢T.

But now ask yourself whether S is in itself or not; that is, set T'=S. Then
you get
S e S if and only if S¢S,

which is clearly not possible. Thus, our definition for S is not logically
possible. Incidentally, another way of stating the same paradox, and in a way
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that it a little easier to understand, is in terms of the “Barber of Seville”:
The barber of Seville only shaves those people who don’t shave themselves.
If the barber of Seville shaved himself, then that would be a contradiciton
since he only shaves people who don’t shave themself; and if he didn’t shave
himself, then he would have to shave himself. So, like with Russell’s paradox,
one can conclude that there is no such person as the Barber of Seville.

There are various systems of axioms for set theory which avoid this para-
dox, by disallowing S above to be deemed a set, be we will not concern
ourselves further with it. Incidentally, the brand of set theory prior to Rus-
sell’s work is called “naive set theory”.

1.2 Intersections, Unions, Complements, Cartesian Prod-
ucts, and Powersets

There are various ways of building up sets from other sets by taking intersec-
tions, unions, complements, cartesian products, and powersets, and we will
presently discuss these constructions.

Given two sets A and B, the set of all elements that are in both A and
B is called the intersection of A and B, and is denoted by AN B. The set of
elements of that are either in the set A or the set B is called the union of A
and B, and is denoted by AU B. Finally, if A is a subset of some universal
set U, then the complement of A with respect to U is denoted by A, and is
the set of all elements of U that are not contained in A. In most cases, the
set U will not be stated explicitly and so must be gleaned from the context
of the discussion: For example, if one is reading a mathematical paper where
the object of study is the set of integers, then U will be the set of integers,
unless otherwise stated.

Here are some basic laws concerning set intersection, union, and comple-
mentation:

LIfANA=0.
II.AUA=U.
1. A = A.

IV.If AC B, then B C A.

V.If AC Band C C B, then (AUC) C B.
VI. AUB=ANB.

VII. AnNB=AUB.



Parts I through V are easy to prove. Here is a proof of part VI, and
proof of part VI is similar (or can be proved by assuming VI, and taking
complements):

Proof of VI. We will show that AUB C AN B and that ANB C AU B.
To prove the first part, we note that since AN B C A and AN B C B, from
property IV we get A C AN B and B C AN B; and then, from property V
we deduce (AU B) C AN B.

To prove the second part, let + € ANB. If + € A, then we are done,
since then € AU B. So, we may assume that ¢ A, which is the same as
saying that € A. We will presently deduce that = € B, which would imply
x € AU B, and therefore finish the proof. To make this deduction, suppose
that, for proof by contradiction, x € B. Then, since z is also in A we would
have x € AN B, which is impossible since we are given also that z € AN B,
which would mean that x € ) = AN BN (AN B). Thus x is not in B, which
implies that € B. [ |

Given two sets A and B, the cartesian product of A and B, denoted by
A x B, is the set of all ordered pairs * (a,b), where a € A and b € B. If B is
the same set as A, then the cartesian product A x B is sometimes denoted
as A2, One can define the cartesian product of any number of sets (instead
of just two sets), and the definition of such a set (cartesian product) is what
you think it should be.

Given a set A, the powerset of A, denoted by 24 is the set of all subsets
of A. So, for example, if A =1{1,2,3}, then

2% = {0, {1}, {2}, {3}, {1. 2}, {2,3}, {1,3}. {1,2,3}}.

Notice here that we use {1} to denote the subset of A consisting of the single
number 1, rather than just 1. This is because elements and subsets are two
different kinds of objects: It would be correct to say that {1} € 24, but
incorrect to say 1 € 24. Also notice that the empty set is in A, since it is
indeed a subset of A. Now, if A has k elements, then 24 will have 2% elements;
and so, one can see why the notation 24 for the powerset was chosen.

!The phrase “ordered pair” means that we distinguish between (a,b) and (b, a); for
example, the ordered pair (1,2) is not the same as (2,1). There are some contexts where
it is mot important to distinguish between the two orderings; for example, if we say that S
is the set {1,2}, then it doesn’t matter if we list the elements of S like that, or as {2,1}.



1.3 Maps and the Cardinality of a Set

Before we can proceed further with our discussion of sets, we will need to
introduce the notion of surjective, injective, and bijective functions.

Given two sets A and B, we say that f is a function or map from A to B,
and denote it by f : A — B if and only if to each a € A there corresponds one
and only element f(a) € B. This definition is the same as the usual definition
of a function. A more abstract way to define functions is as ordered pairs in
A x B. More specifically, one can define a function f as a subset of A x B,
where for each a € A there is exactly one b € B such that the ordered pair
(a,b) € f. I admit this is a rather strange way to define functions, and I am
not sure myself why some mathematicians even bother using this definition.
Often when a candidate function f fails to be a genuine function, it is easy
to spot why; however, sometimes it is not so obvious. The basic problem
that often occurs is that there are different names for the same element of A,
and if f is indeed a function then it had better send the element defined by
these different names to the same target element in B; that is, in order for
f to be a function, it must be “well-defined”, which means that if z,y € A,
with x = y, then f(z) = f(y). Here is an example of a candidate f that is
not well-defined, and so is not a function: For each integer j, we let j 4+ 2Z
denote the set {j +2z : 2z € Z}. It is obvous that j + 2Z = k + 27 if
and only if j and k are of the same parity; that is, you get equality here if j
and k are both even or both odd. Let A and B both be the two element set
{1+2Z, 0+ 27Z}, and consider candidate function f from A to B given by

| Cfo0+2z, ifj=0;
f+22) = {H—QZ, if j # 0.

If we restrict ourselves to j = 0, 1, then this does indeed give a function from
A to B = A; however, if we allow j to be any integer, then this will not give
a function from A to B, because it is not well-defined. That is, for example,

FOO+27Z) = 0427 # 1427 = f(2+27),

and yet 0+ 2Z = 2 + 27, which is a case where we have two different names
for the same element of A.
Associated to the function f we have the image of f, denoted by im(f) =

{f(a) : a € A}, which is the set of all b € B that f “lands on”. Another
collection of sets associated to f are the fibres or inverse images: Given



f:A— B,and given aset C C B, theset D ={a € A : f(a) € C}is
called the inverse image of C', and is denoted by f~1(C). For a given element
b€ B, welet f71(b) denote the set f~1({b}). 2 According to this definition
we do not have to have that C' lies entirely in im(f); indeed, we may have
that f~'(C) is empty, and this occurs precisely when C' Nim(f) = (. If two
sets C, D C B are disjoint, that is C' N D = (), then f~'(C) and f~'(D) are
also disjoint. In fact, the collection of sets f~1(b), where b runs through the
elements of B, form what is called a disjoint partition of A: A collection of
sets Ay, Ag, ... form a disjoint partition of A if A = A; U Ay U - -+, and if the
A;’s are pairwise disjoint, by which we mean A; N A; = 0 for ¢ # j. Since
we know that the sets f~1(b) are disjoint, to show that they form a parition
of A, we just need to see that their union equals A. This too is easy to see,
since each a € A is in at least one of the sets f~*(b), namely b = f(a).

If im(f) = B, then we say that f is surjective or onto; that is, f surjective
means that every element of B gets “landed on” by f. We say that f is
injective or one-to-one if f(a) = f(c), a,c € A, implies a = ¢. Another way
of saying this is that f~1(b) is either the empty set or contains exactly one
element. Finally, if f is both surjective and injective, then we say that f is
a one-to-one correspondance, or is bijective, or is a bijection.

Given a set C' we denote the identity map on C' by 1, which is a function
from C to C such that 1¢(c) = cfor every ¢ € C. We say that f has an inverse
g if g is a function from B to A such that the composition (fog)(b) = f(g(b))
is the identity on B and the composition (go f)(b) is the identity on A; that
is, fog=1g and go f = 14. It turns out that, and is not difficult to prove,
f has an inverse g if and only if f is a bijection.

Given two sets A and B we write |A| = |B| if there is a bijection f : A —
B. This is a generalization of the usual notion of |A| and |B|, which is the
number of elements of A and B, which only has meaning when A and B are
finite sets, and certainly if two finite sets have the same number of elements
if and only if there is a bijection between them (the sets).

We can also put a partial ordering on sets as follows:® Given sets A and
B, we say that A is less than or equal to B, and we write this as either A < B
or |A| < |B|, if there exists an injection f: A — B. If A < B, but |A| # |B|,

2The reason for this extra definition is that f~1(C) is defined for subsets C' C B, not
for elements of B.

3 Actually, sets can be “well-ordered”, by which we mean that given any two sets A, B,
either |A| < |B| or |B| < |A]. Tt turns out that the fact that sets can be well-ordered is
equivalent to the axiom of choice.



then we write A < B.
Here are some further properties of functions and sets:

I. (Inclusion Preserving) If f: A — B, and C C D C B, then f~}(C) C
(D).

II. (Transitivity of Cardinalities) If |A| = |B| and |B| = |C|, then |A| =
|C.

III. If A < B and B < A, then |A| = |BJ|. This statement is equivalent
to saying that if there exists injections from A to B and from B to A, then
there exists a bijection from A to B (and B to A).

IV. |A| < |24]; that is, there is an injection from A to 24 but there cannot
be a bijection from A to 24. This is not obvious to prove in the case where
A is infinite, and the usual proof uses Cantor’s diagonalization argument, as
we'll see.

Of these properties, the one that would give you the most trouble if you
tried to prove it is property IV. Therefore, I will give the proof here.

Proof of IV. Suppose, for proof by contradiction that there exists a bijec-
tion ¢ : A — 24, The idea is to now use Cantor’s trick (i.e. diagonalization)
to show that ¢ cannot be surjective, and therefore couldn’t have been a bijec-
tion, which would imply that A < 24. To show this (that ¢ is not surjective),
we cook up an element in 24 that cannot get mapped to by ¢ as follows: Let
B C A be defined as follows

be B if and only if b ¢& ¢(b). (1)

Notice how similar this looks to the definition of S in Russell’s paradox.
Now, if ¢ were surjective there would have to be an element b € A such that
¢(b) = B, but this is impossible since upson setting ¢(b) = B in (1) we would
have

be B if and only if b¢ B = ¢(b).

Thus, as claimed, ¢ is not surjective, and the claim follows. [ |

This proof is perhaps a little difficult to understand if you haven’t seen
it before; also, even if you have seen Cantor’s diagonal trick, you might not
recognize in the form presented above. Thus, I will give you a little of the
intuition behind the proof, by considering the case where A = N (the positive
integers): Suppose you had a bijection ¢ from A to 24. You can think of



this function by imagining that you have a sheet of paper with an infinite
number of rows and an infinite number of columns. Each row will be filled
with an infinite number of 0’s and 1’s, and the pattern of 0’s and 1’s in the
jth row will tell you which subset of A the set ¢(j) happens to be: There
will be a 1 in the ith column (and jth row) if the number i € ¢(j), and there
will be a 0 in this column (again, jth row) if the number i & ¢(7).

The idea of Cantor’s argument is to cook up a string of 0’s and 1’s (that
is, a subset of A) such that this string differs from all the other strings in all
the rows of your infinite sheet of paper in at least one column entry. This
string will thus correspond to a subset of A which does not get mapped to
by ¢, because if it were mapped to by ¢, then it would have to have the same
pattern of 0’s and 1’s as one of the rows on your sheet of paper. One such
string can be gotten by letting its ith entry be different from the ith column
entry of the string in the ith row of your piece of paper. If you call this string
B, then the ith entry of B is a 1 if the entry in the ith row, ith column is
a 0; and the ith entry of B is a 0 if the entry in the ith row, ith column is
a 1. Clearly this B has the property we are looking for, and so we deduce
¢ cannot be surjective. To see that this really is the same proof as we gave
above (at least when A = N), note that the condition that the ith entry of
B is different than the entry in the ith row, ith column is equivalent to the
condition (when we now think of B as a subset of A, rather than as a string
of 0’s and 1’s)

i€ B if and only if i & ¢(i).

Here are two more facts about cardinalities:
I. There is an infinite sequence of infinite sets, no two of which are in
bijection. For example,

IN| < [2Y] < ‘221“‘ <

All sets with the same carinality as the integers as said to be Ry ( read
“aleph null”; aleph is the first letter of the Hebrew alphabet). The set ¥; is
defined to be the smallest infinite set larger than Ny, and we will not concern
ourselves further with it here.

II. Any set S with |S| = |N| is said to be countable; and if |S| # |N| and
S infinite, then S is said to be uncountable. The sets N,Z, and Q are all
countable sets; that is,

IN| = [Z] = |QI.



It turns out that
IC| = [R] = |[0,1]] = |2,

and so are all uncountable.

2 Sample Space, events, and measures

NOTE: Before I embark on the discussion in this section, I first want to point
out that we will take a more abstract and more general approach to things
than what appears at the beginning of chapter 2 of Meyer. I will point out
later in these notes how the discussion differs from the one presented there.

Formally, a probability space is a triple (S, %, P), where S is called the
sample space, X is call the set of measurable events, and P is the probability
measure. We will now see what these three things mean.

2.1 Basic Definitions

When we perform an experiment, the set of all possible outcomes is called
the sample space S. For example, if the experiment is “flip a coin three
times”, then the possible outcomes are HHH, HHT, HTH, HTT, THH, THT,
TTH, and TTT; so, there are 8 possible outcomes. These outcomes are
sometimes called “elementary events”. In this example we could let S =
{HHH,...,TTT} be the sample space. Depending on the way one records
the experiment, the sample space could be different; thus, there is no one
right sample space for a given experiment.

Once one has identified the sample space S, one next defines the set of
events F to be the set of all subsets of S. Thus, £ = 25.

Next, one picks out a special subset > C FE, called a o-algebra, which
satisfies the following properties:

L0eX;

II. If A€ X, then A € X (here the complement is taken with respect to
S); and,

III. If Ay, A, ... is a countable sequence of events in X, then their union
also belongs to 3.

A o-algebra is a generalization of an algebra, which has the same defining
properties as a o-algebra, except that for property III, only finite unions are
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allowed. One obvious corollary of ¥ being a o-algebra is that it is also closed
under countable intersections, by which we mean: If Ay, A,, ... is a countable
sequence of events in Y, then their intersection also belongs to . The proof
follows since by de Morgan’s law we have:

mAZ = ﬁ)

and the right-hand-side belongs to ¥ since each A; belongs to 3, then the
contable union of these A; belongs to ¥, and finally, the complement of this
countable union then belongs to X.

The o-algebra ¥ that we will work with is not just any o-algebra, but is
one for which we have a probability measure P. Formally, a probability mea-
sure P is a mapping P : ¥ — [0, 1] which satisfies the following properties:

I. If Ay, As, ... is a countable sequence of disjoint events in ¥ (to say they
are disjoint means they are disjoint as sets), then

P(UA,) = ) P(A).
II. P(S) =1.

Side Notes: One might worry that ) and S is not in 3, and so one might
would worry that their probabilities could not be computed. However, one
sees that () lies in X by definition, and S lies in X, being the complement
of 0.* Another question: Why do we only allow a countable number of sets
for property 17 Why not uncountable? And the answer is: Otherwise, what
would the sum of P(A;) over an uncountable set of sets even mean?

In the case where S is a finite set, say S has k elements, there is an obvious
choice for 3 and P which makes (S, %, P) into a probability space: Namely,
you take ¥ to be the power set on S, and you define P so that every subset
A of S having ¢ elements has P(A) = ¢/k. Consider for example the coin toss

4In class I wrote “Q2 € X7 for property I of o-algebras. Recall here that € is an-
other common name for the sample space S. Once one has “closure under complements”
property, then “Q € ¥ is equivalent to “ € ¥”.
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experiment where S = {HHH, HHT, HTH, HTT, THH, THT,TTH,TTT}.
Then, if ¥ is the powerset on S, it will have 2% = 256 elements. Now, consider
the event “You roll at least one head during your three rolls”. If you call
this event A, then A= {HHH, HHT,HTH, HTT, THH, THT,TTH}, and
so has ¢ = 7 elements. If you choice of probability measure is as described
above, then this event will have probability P(A) = 7/8.

More generally, if one has that S has k elements, the set of all probability
measures on 2° are constructed in the following way: Let S = {sy, ..., s1},
and start with probabilities P({s1}) = a1, P({s2}) = ag, ..., P({sx}) = ax,
where 1 = a; + -+ + a,. This sum of probabilities condition is necessary
since

1L = P(S) = P({s1}) +---+ P({s})-

Now, it follows that P({si,, Siy, ---; Si,}) = @iy + - - -+ a;,. One can check that
this indeed gives a probability measure on 2°.

These more general measures are actually needed to describe certain ex-
periments; for example, suppose you roll a loaded die where the probability
of getting a 1 is 1/2, and the probability of getting 2,3,4,5,6 are each 1/10.
Then, S = {1,2,3,4,5,6}, and not all the elementary events {j} have the
same probability.

Before we move on to some subtleties, here are some basic properties of
probability measures on a o-algebra ¥ C 2°:

I. P(@) = 0. Since SUQ = S, where S and @) are disjoint, we have by
property II above that

1 = P(S) = P(SUD) = P(S)+ P) = 1+ P(0)
implies P(()) = 0.

IL If E € %, then P(E) =1 — P(E). To see this we note that £ € ¥ by
properties of a g-algebra. Then, since E and E are disjoint we deduce
1 = P(S) = P(EUE) = P(E)+ P(E),
and the result follows.

III. If A, B € ¥ with A C B, then P(A) < P(B). To see this, observe
that B = AU (BN A); also, note that A and B N A are disjoint. Then,

P(B) = P(AU(BNA)) = P(A)+P(BNA) > P(A),
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whence the claim follows.
IV. If Ay, ..., Ay € ¥ then
P(AyUAsU---UAL) < P(Ay)+---+ P(Ap).

This is one of your homeworks, so I won’t give the proof here. However,
the idea of the proof is to first show P(AU B) < P(A) + P(B) for events
A, B € ¥, which can be done by observing that AUB = AU(BNA). Then,
noting that these last two unioned sets are disjoint one can deduce...

V. If A,B € ¥ then P(AUB) = P(A) + P(B) — P(An B). This is
sometimes called “inclusion exclusion”, and its name will become obvious
when we do a more general version of it later on in the course. One can also
regard this formula as a generalization of property IV. Since this property
was another one of your homeworks, as with property IV, I will not bother
to write down the proof.
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