

Notes 2 for Honors Probability and Statistics

Ernie Croot

August 24, 2010

1 Examples of σ -algebras and Probability Measures

So far, the only examples of σ -algebras we have seen are ones where the sample space is finite. Let us begin with a FALSE example of a σ -algebra where S is infinite:

False example of a σ -algebra. We say that a subset $A \subseteq \mathbb{N}$ has density ρ if and only if

$$\lim_{n \rightarrow \infty} \frac{\#\{a \in A : a \leq n\}}{n} = \rho.$$

Another, more compact way of writing the numerator in the limit is $|A(n)|$, which is the cardinality of the set $A(n)$, which in turn is the number of elements of A that are $\leq n$.

Not every subset of \mathbb{N} has a density. For example, the set B with the property that $b \in B$ if and only if b is an integer lying in an interval $[2^{3j}, 2^{3j+1}]$ for some integer $j \geq 0$, does not have a density. Another way of writing B is as the infinite union

$$B = \{1, 2\} \cup \{8, 9, \dots, 16\} \cup \{64, 65, \dots, 128\} \cup \dots$$

To see that B does not have a density, consider the size of $|B(2^{3k} - 1)|$, for some integer $k \geq 1$. This set will have

$$(1 + 1) + (8 + 1) + (64 + 1) + \dots + (2^{3(k-1)} + 1) = k + \frac{2^{3k} - 1}{7} \text{ elements.}$$

So, $|B(2^{3k} - 1)|/(2^{3k} - 1)$ will tend to the limit $1/7$ as $k \rightarrow \infty$. But now consider the size of $B(2^{3k+1})$. This set is exactly the same as $B(2^{3(k+1)} - 1)$, and so has size $(k+1) + (2^{3(k+1)} - 1)/7$ elements; and so, $|B(2^{3k+1})|/(2^{3k+1})$ tends to the limit $4/7$ as $k \rightarrow \infty$. So, the limit $|B(n)|/n$ does not exist, meaning that B does not have a density.

Now, it seems intuitively obvious that if we let $S = \mathbb{N}$, and let Σ be the set of all subsets $A \subset S$ that *have* a density ρ , and then let $P(A) = \rho$, then (S, Σ, P) is a probability space. It turns out that this is not true! The problem here is that Σ is NOT a σ -algebra, and, in particular, is not closed under intersections. An example of a pair of sets $C, D \in \Sigma$ whose intersection is not in Σ is given as follows: Let C denote the set of even integers, and let $D = D_0 \cup D_1$, where D_0 is the set of even integers lying in an intervals of the form $[2^{3j}, 2^{3j+1}]$ (where $j \geq 0$ is an integer), and where D_1 is the set of odd integers that lie in intervals of the form $(2^{3j+1}, 2^{3(j+1)})$ (again, $j \geq 0$ is an integer). Then one can show C and D both have density $1/2$, but their intersection is the set of even integers in B , the pathological set we constructed above; and, the set of even integers in B likewise does not have a density. So, $C \cap D$ does not belong to Σ , which proves Σ is not a σ -algebra.

A positive example: Borel sets. Given a collection of sets C , which are to be subsets of some more basic set S (or Ω as we've said) we say that Σ is the σ -algebra generated by C , and we write it by $\Sigma = \sigma(C)$, if Σ is gotten by applying countable set operations (union and complementation) to C . Another definition for Σ is that it is the intersection of all the σ -algebras Σ_1 such that $C \subseteq \Sigma_1$. Here is an example: Start with $S = \{1, 2, 3, 4\}$, and let $C = \{\{1, 2\}, \{3, 4\}\}$. Then, it turns out that

$$\Sigma = \sigma(C) = \{\emptyset, \{1, 2\}, \{3, 4\}, \{1, 2, 3, 4\}\}.$$

To see this, first note that Σ is a σ -algebra on $S = \{1, 2, 3, 4\}$: We have that $S \in \Sigma$, the complements of each of the elements (subsets of S) are in Σ , and it is easy to see that all unions lie in Σ . Also, it is obvious that any σ -algebra containing C must likewise contain Σ . So, Σ is the σ -algebra generated by C , i.e. it is the intersection of all σ -algebras containing C .

In this case Σ was not equal to the power set 2^S ; however, had we chosen $C = \{\{1\}, \{2\}, \{3\}, \{4\}\}$, then Σ *would* have been the powerset 2^S .

Given a subset X of the real numbers, and given a point $x \in X$, we say

that the set

$$\{y \in X : |x - y| < \epsilon\}$$

is an ϵ -neighborhood of x relative to X , and we denote the set of points y by $N_X(x; \epsilon)$. We say that a subset $Y \subseteq X$ is *open relative to X* if and only if for every point $y \in Y$ there is a neighborhood $N_X(y; \epsilon)$ contained within Y ; that is, $N_X(y; \epsilon) \subseteq Y$. We also say that a subset Y is *closed relative to X* if its complement $\overline{Y} = \{y \in X : y \notin Y\}$ is open. Note that the empty set¹ and X itself are both open *and* closed relative to X . This is probably not the definition of open sets you are used to, so let us look at a few examples, to make sure you understand it:

Example 1: Let X be the closed interval $[0, 1]$. Then, the half open interval $[0, 1/2)$ is a $1/2$ -neighborhood of 0 relative to X , since

$$[0, 1/2) = \{y \in [0, 1] : |0 - y| < 1/2\};$$

however, it is NOT a $1/2$ -neighborhood of 0 relative to \mathbb{R} . I also claim that $[0, 1/2)$ is an open set relative to X .

Example 2: Let $X = \{1, 2, 3, 4\}$. Then, the single point 3 is a 1 -neighborhood of 3 relative to X , since

$$\{3\} = \{y \in X : |3 - y| < 1\}.$$

In fact, the set of all the neighborhoods relative to X are $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1, 2\}$, $\{2, 3\}$, $\{3, 4\}$, $\{1, 2, 3\}$, $\{2, 3, 4\}$, and $\{1, 2, 3, 4\}$. In this example, all the subsets of X are both open and closed relative to X , as you can check.

Now we can define what the Borel sets of \mathbb{R} are: Given a subset $X \subseteq \mathbb{R}$, let U be the set of subsets of X that are open relative to X ; that is,

$$U = \{Y \subseteq X : Y \text{ open relative to } X\}.$$

Let $B(X) = \sigma(U)$ be the σ -algebra generated by these open subsets U . The B here stands for A. Borel. $B(X)$ is called the “Borel σ -algebra generated by X ”, which means that “ $B(X)$ is the σ -algebra generated by the open subsets of X ”.

¹The empty set is vacuously an open set relative to X .

Let us now consider what types of subsets are contained in $B(\mathbb{R})$. We first claim that $B(\mathbb{R})$ is the σ -algebra generated by all the open intervals (a, b) , where $a < b$; that is,

$$B(\mathbb{R}) = \sigma(\{(a, b) : a < b\}). \quad (1)$$

Basically, to prove this fact, one just needs to show the following basic fact that I assigned for homework:

Claim. Every open subset of \mathbb{R} is a countable union of open intervals (a, b) .

This claim implies that if U is the set of open subsets of \mathbb{R} , then

$$U \subseteq \sigma(\{(a, b) : a < b\}) \subseteq \sigma(U),$$

which in turn implies

$$B(\mathbb{R}) = \sigma(U) \subseteq \sigma(\{(a, b) : a < b\}) \subseteq \sigma(U),$$

which proves (1). The fact we've used here is that if $A \subseteq \sigma(B)$, then $\sigma(A) \subseteq \sigma(B)$.

As promised, here are some subsets of $B(\mathbb{R})$:

I. Single points $\{a\} \in B(\mathbb{R})$. To see this, consider the open intervals $I_n = (a - 1/n, a + 1/n)$ for $n \in \mathbb{Z}^+$. Then,

$$\{a\} = \bigcap_{n=1}^{\infty} I_n,$$

and note that this intersection lies in $B(\mathbb{R})$, being a countable intersection on open intervals.

II. Any countable subset of the reals $A = \{a_1, a_2, \dots\}$ lies in $B(\mathbb{R})$. This is because A is a countable union of elements of $B(\mathbb{R})$, namely the singleton sets $\{a_n\} \in B(\mathbb{R})$.

III. Any closed or half closed interval lies in $B(\mathbb{R})$, since, for example,

$$[a, b] = (a, b) \cup \{a\} \cup \{b\},$$

is the union of three elements of $B(\mathbb{R})$.

IV. Any half-infinite interval lies in $B(\mathbb{R})$. For example,

$$(-\infty, a) = \bigcup_{j=1}^{\infty} (a - j, a - j + 1).$$

Also, the intervals $(-\infty, a]$, (a, ∞) and $[a, \infty)$ all lie in $B(\mathbb{R})$.

V. Any countable union of intervals, finite or infinite, open, closed, or half open or closed, lie in $B(\mathbb{R})$.

So you see, $B(\mathbb{R})$ is *extremely* general, and will certainly be large enough for all the examples we will do in this course (we may need to use $B(\mathbb{R}^n)$, and I hope you can surmise its definition).

1.1 Probability Measures on Borel Sets

So far the only type of measure on a σ -algebra we have studied is a probability measure. A probability measure is actually a special case of a measure: A measure μ on a σ -algebra Σ is a mapping $\mu : \Sigma \rightarrow [0, \infty]$ (note here that we include ∞ in the arrival space; there may be some subsets in Σ with infinite μ -measure) which is countably additive, by which we mean that if A_1, A_2, \dots is a countable sequence of disjoint subsets of a set S , where each A_i lies in Σ , then

$$\mu \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_i \mu(A_i).$$

The σ -algebra $B(\mathbb{R})$ has a standard measure μ , which is called the Borel measure (for obvious reasons!), and it assigns the intervals (a, b) the value $b - a$; that is, $\mu((a, b)) = b - a \in [0, \infty]$. Thus, this measure is consistent with our usual notion that the “length” or “measure” of the interval (a, b) is $b - a$. However, *proving* there exists a measure μ on all of $B(\mathbb{R})$ having this property is not easy. The main problem is showing that μ is well-defined; that is, there are many different ways of building up a subset of \mathbb{R} by applying set operations to intervals (a, b) , and the value of μ applied to all these various constructions for the same subset has to be the same. The main tool used to prove that there is a measure μ on $B(\mathbb{R})$ consistent with our usual definition of length (so, $\mu((a, b)) = b - a$) is the following theorem due to Caratheodory:

Theorem (Carathéodory's Extension Theorem). Let S be a set, and let Σ_0 be an algebra on S ; that is, Σ_0 is a collection of subsets of S satisfying the following properties:

1. $S \in \Sigma_0$;
2. If $A \in \Sigma_0$, then $\overline{A} \in \Sigma_0$; and,
3. If $A, B \in \Sigma_0$, then $A \cup B \in \Sigma_0$.

Suppose that $\mu_0 : \Sigma_0 \rightarrow [0, \infty]$ is a countably additive map on Σ_0 . Then, if we let Σ be the σ -algebra generated from Σ_0 , we have that there exists a measure μ on Σ which agrees with μ_0 on Σ_0 ; that is, if $C \in \Sigma_0$, then $\mu(C) = \mu_0(C)$. Furthermore, if μ_0 is bounded, then μ is unique.