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1 Measure Theory and Integration

Now that we have a measure on B(R), namely the Borel-Lebesgue measure,
we can try to see what measure it assigns to certain sets. The main tool
we will use is the Monotone Convergence Theorem for Sets in one of the
following two forms:

MCT1. Suppose that Σ is a σ-algebra on a set S, and that µ : Σ → [0,∞]
is a measure. If A1, A2, ... are subsets in Σ satisfying A1 ⊆ A2 ⊆ · · · then we
have that if A = ∪jAj,

lim
k→∞

µ(Ak) = µ(A).

Note: We had proved this before for probability measures, but it holds for
measures in general.

MCT2. Suppose S, Σ, and µ are as above. Given A1 ⊇ A2 ⊇ A3 · · ·, all
lying in Σ, let A be their intersection. Then, we have

lim
k→∞

µ(Ak) = µ(A).

Note: This is a homework problem you were asked to solve, except that here
µ is a general measure, not just a probability measure.

Now, suppose that µ is the Lebesgue measure on B(R). Then, we have
the following two basic observations:

I. For any a ∈ R, µ({a}) = 0. To see this, we apply MCT2: Let Aj be
the open interval (a − 1/j, a + 1/j). Then, {a} = ∩jAj. So,

µ({a}) = lim
j→∞

µ(Aj) = lim
j→∞

2

j
= 0.
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II. As a corollary of I we get that any countable subset of R has measure
0 (why?).

Here is a question that leads to a deeper appreciation of just how special
the Lebesgue measure is:

Question: Must we have that if λ is a measure on B(R) then λ({a}) = 0?

It turns out that the answer is NO; that is, there do exist strange measures
on B(R) which assign singletons non-zero measures. A good example of such
a measure is the following one: Suppose that A ∈ B(R). Then we have that

λ(A) =

{

1, if 0 ∈ A;
0, if 0 6∈ A.

It is easy to check that this is a measure on B(R), and it is obvious that
λ({0}) = 1.

The natrual progression of our discussion of the Lebesgue measure at
this point would be to define the Lebesgue integral, and then state and prove
various theorems about it. However, to do this task properly would take too
much time, and since we only need the most basic properties of the Lebesgue
integral for this course, I will only say here a few things about it. First,
let me say that another way of writing the Lebesgue measure of a subset
A ∈ B(R) is as

µ(A) =

∫

A

µ(dx) =

∫

R

1A(x)dx, (1)

where 1A(x) takes the value 1 if x ∈ A, and takes the value 0 if x 6∈ A. This
function 1A(x) is sometimes called the indicator function for the set A. I
should say here that rather than thinking of this as another way of writing
µ(A), you should think of it as the “defining property” of Lebesgue integrals
over indicator functions. The Lebesgue integral over general functions is
then defined as a certain limit of integrals over finite linear combinations of
indicator functions.

The right-most integral may be interpreted as
∫

R

1A(x)dx =

∫

∞

−∞

1A(x)dx. (2)

Now, if A is just a finite union of intervals, then we could evaluate the integral
on the right hand side here quite easily using the standard Riemann integral
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from Calculus. For example, suppose that A = (0, 1) ∪ (2, 3). Then, the
right-most integral would be

∫

3

0

1A(x)dx =

∫

1

0

1dx +

∫

3

2

1dx = 1 + 1 = 2.

If, on the other hand, A is a really gnarly set, constructed using infinite
set operations, then we may not be able to evaluate it using the Riemann
integral. A classic example is when we let A be the set of rationals in [0, 1].
Then, by manipulating (1) and (2) on a purely formal level we should have
that

∫

∞

−∞

1A(x)dx =

∫

1

0

1A(x)dx = µ(A) = 0, (3)

since A is countable. This equation in some ways reflects our common sense
notion that the rationals are a “very thin”, albeit “dense”, subset of the reals
in [0, 1].

Now, it is obvious that 1A(x) is not Riemann-integrable, because the
upper and lower sum estimates don’t converge to one another. What do
I mean here? Suppose we partition the interval [0, 1] into n subintervals
Ij = [(j − 1)/n, j/n], j = 1, 2, ..., n, and we let mj be the minimum value of
1A(x) on Ij and let Mj be the maximum value of 1A(x) on Ij. Then, if 1A(x)
were Riemann-integrable we would have to have

lim
n→∞

1

n

n
∑

j=1

mj = lim
n→∞

1

n

n
∑

j=1

Mj;

however, since every interval Ij contains infinitely many rationals and irra-
tionals (non-rationals), we have that mj = 0 and Mj = 1. So, the sum on
the left-hand-side is always 0 and the sum on the right-hand-side is always
1, no matter how large we take n to be. Thus, the two limits are not equal,
and 1A(x) is therefore not Riemann-integrable.

In everything we’ll ever do, we will not need to evaluate such integrals (via
Lebesgue integration), so henceforth we will only make use of the Riemann
integral. That said, there is one more result that I want to mention before
we leave integration theory altogether:

Radon-Nikodym Theorem. Suppose that α is a measure on B(R), and
let µ be the Lebesgue measure on B(R). Then, we have that if the following
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condition holds

for every A ∈ B(R), µ(A) = 0 if and only if α(A) = 0,

then there exists a Lebesgue-integrable function f(x) ≥ 0 (actually, f(x)
needs to also be what is called an L1 function, but we will not worry about
this extra assumption) such that α can be represented as

α(B) =

∫

B

f(x)µ(dx) =

∫

∞

−∞

f(x)1B(x)dx.

NOTE: There are more more general formulations of the Radon-Nikodym
theorem than what I stated here.

The first thing I want to point out that the condition which says that α
and µ “agree on measure zero sets” is actually necessary; that is, it is easy
to produce examples where the conclusion of the theorem is false if we don’t
assume this condition. One example is our measure λ stated previously. This
measure clearly doesn’t agree with µ on measure 0 sets, since for example,

λ({0}) = 1 6= 0 = µ({0}).

The measure λ also fails to satisfy the conclusion of the theorem; of course,
to properly see this we would need to understand how the Lebesgue integral
works, which I said I wasn’t going to explain. Basically, one can see that if
there were such a function f(x) ≥ 0, then for B = {0} we would have to
have

1 = λ({0}) =

∫

∞

−∞

f(x)1B(x)dx

=

∫

0

0

f(x)dx = 0.

The second thing I want to point out here is that the theorem kind of
suggests that it might be possible to construct other measures by starting
with a function f(x) ≥ 0 which is Lebesgue-integrable, and then defining the
measure through integration. This brings me to a question which was asked
in class, namely:

Question: Suppose that one selects a real number at random. What is the
probability that the number is positive?
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The problem with this question comes in when you try to decide “with
respect to which probability measure?” The sort of measure you would want

to have here, namely one which weights all length L intervals (a, a + L)
equally, doesn’t exist. That is to say

For any L > 0 there does not exist a probability measure on B(R)
which assigns all the intervals (a, a+L) the same value P ((0, L)).

So, the question is ill-posed. However, if we impose a genuine probability
measure at the outset, then it can be solved: First, suppose that

f(x) =
e−x2

√
π

.

Then, a standard fact is that
∫

∞

−∞

f(x)dx = 1.

Now, using Lebesgue integration we can define a probability measure α on
B(R) as follows:

α(A) =

∫

A

f(x)µ(dx) =

∫

∞

−∞

f(x)1A(x)dx.

Notice here that α(R) = 1, which is required in order for α to be a probability
measure. If you knew more about the Lebesgue integral you could check that
α is actually a measure. Now, let us consider the following variation on the
above question:

Question. Suppose that one picks a random number in R with respect to
the measure α. What is the probability that that number was positive?

The event we are asking for the probability measure of is R
+. So, we are

asking for α(R+), which is
∫

∞

−∞

f(x)1R+(x)dx =

∫

∞

0

f(x)dx =
1

2
.

So, the answer is 1/2.
Using the language of measures of events in B(R) to describe random

events or processes may seem a little wierd, and later we will show how
to recast all these questions in terms of “random variables”, “distribution
functions”, and “density functions”, which is a more natural context for
these types of problems.
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