| e 2 \ O
Lectwre Cvmie s claws

Fridow, «lzlio
Lo‘( <§) i: / F } L)c & m\’ab&b"\;t’s S‘P&CQ_.

LQ/F @ [ E be A '~ e;/zw’t“-
e Sard ok e SoVlovdmy Vo e

7 -~ “‘S&‘o‘(’“— "

g - AR rAe (.

T P(e) 70, doxrs ouf

’:‘:F@ \\f\'}'\f\ A M/h,vr'ﬁ/\

A.wa Cam  €QMDP
(Ca,,\ouén‘mmfl) | (%o{rf—/(f‘l\k{ e Tl S

},GD\\GNS": - Fex Ae ?r(; )
T @ .;’ﬂ# PCANB )
W ( A \\ ) . — - - - @
| ¥ (r)
Note  hwad e LHS e —(@ck i e alday

AA%Q{M Proflradd LIS hecdare (OML
vie o a proteads M\’Q)V

=

we P«cov&
ek b vs  shomdard b abwe miohow
i WAL he Aaw~e Lo Hexn = ad  demete



| ,hﬂ; dap endovcs @ @h'B/Wng('(B). @

@ Ja .hav( WVeoaa am w{_(osge 46’5 (P.(av{ N
(D sl A P’ro’(ra/(r\r[«'b\ htchwre o Oren
Q\NL T - G_ASQ LY‘& ;@ | |

Wavmng | Comdi INoming  Cavn Gk Con~doncion )

e &\/\r\ e, Moty HaU
exavple . Mok Bt
| (Vfo\{ Exiwt’& ' ( T ',QO\.A\QA Yo ComV it \rv\Ag
,JLQMQ% op N Q.%‘_,D D The Chante

&r’ \/\0\\(\ Chwo oy (cwab\f\wo m>
%{\mv\ (e gac,&’ M o Com?u’_ erao( a'r

e &bov\; S K \/2 (awo( V‘O.‘( & /L %fb‘f“%l,;

-
Pleri) =% ; P(iesy] 2331‘%:@@3%@#

while o You he & ne (cwowvizcls ¢ 2 e~
ag'}" La A~ 57\‘\’ h«\ Cue a%%uw“e‘) b\'\Q_\{‘e ‘o @ ‘/’L,
ot | ®f A \oo‘} L W\JLQPWHN) 3 omce

X% rwnlberesfingly emeugln L= P({@@% \ bne \{oowqu s |
a bO\a )




&

‘F_w e g\‘».\&e CO\A'QC/\"{OV‘ 'A"Azl"'l Ak_é Z‘/

Defr® |
e o o §A\,r~'/5w_z ave W\M'H\JAB
endoprdak L
P AL Ay »(\#\,\.‘,3‘— v W(Agﬁ).

| o
(ov ench  oabzet ot coMechion o
p AV\ \‘v\,g-;%\'k—e (cp /LV\C«A'\C/V\ éé ev,e,v\,l'g ('S

Cz,\do,}ymw, L Aevuér? frribe  cubell-

‘9

vovss Mooy CTRITT
EYW@\Q@ Jaune Xf\a\/} 2 ciwldven ecclh 9—@
| W\A':C‘f\ ', Qavuﬁ\\l{*g Mk‘z—c‘ﬂ }vv l)& O\bo\.( cx e~ 3
c&(r\ x‘u\&gymae,am"’k) ot e o Fre~A .
- J |y anxl . Soumn R
,A FS‘L ad\  childver o . 71'
A

../‘% Mre ,@qw\k‘tv\ Cine b dod a\}o(,\,( Z’?ﬁl{z&‘

() show A /\g L cudep - anr B, C Cneleyp )

e .
[} - A -~ \ \A.."' (D\&QV\A /(" A o P R A 0w \




Cxeple © Lef @% |
w~ple P = /q, g':_jqaa bbb ccc, abc, ach,

_ . b . : b <
A‘\, 5;,( ﬁei’f-e\r:; a'{}glf\aw SA ac, b a, cab, Cqb @

I)A’L;A {(’ PM?H(;Q%
= ( Ao lc> ooy

Ej_f_:ﬁ’;%i@ P( -Al gnc) =

W(@Qc)
Mo~ = qwaU\M)
PC AL B B, e, )

: W( ’A’ 3. \f}fz,'“ S \ \%\’—-H’”B“’\

Peio B Brn)

X

<\,J(A-Qm2 ‘\[\ XS SMP\?\”M ﬁm— Con Ve A ean Ca ) .

é Mo Lovds® Loch  Aewan~a .

Cern™)
Lelr A A,L) sy A#\ &)9_ GVWJ‘K U Lo "

Caw\O\gM &1 et A‘L, ( awd e o &
dd wot @cc\/\(> NN B¢ [\'E:k :‘QS,

e 2 RRD 2L, e P(nA;)7o.

e P (ang) = A= ©C U A)
5 1= DD P(AD) 70, by hype



IS

6 1p PR LV S eack d, and
&S, SLAZ % wfk'ma,(/(«a \‘v\yQQ@»wM
- )

-

o PO AR = T PR =T (e
70, b e hqee ‘

(Vev;h Pak™ AL vt ihanK;, = $h. [RR S ‘M’ZP',)

The Iﬂo(/owr%j é/lej'é't\/\/\L/ bk /)mvxwfw(/

o Love's v ( ,fmm e pap of
Prat tmrclen

pralce. o

lovnne
K, J0s /LOVA'S%> 4 Leerts
QAM&J ' 0@%@,@0«@ , on® Can
/ .
C oA oA e above:
V= § A, At
(5 o Sepe~cle~Cy gw\pk

fﬁr\\w/\'(m/

[ef

Def: £Zr GCCV)E)

?L‘/ /}\—6 -?.'\/@WA( A‘t,'“,A‘p\ d‘(F Aq

fwvawaU’} (wﬁe,s,wM % aMh AJ w brch
’f‘_f’b_,fiw s A h é ,

ax R y\of"
PR

. ,'S

(qtr,;&by b gresp af fesk ! )

/, ' ho'{V (/VV\«C%'Q ] W%Q/



| A
W (/}f( [ aw@‘Baa/&ww lormb On . 7 /4(:/41)/13):@(/42),

LQMWG\ A//)A% \—6\/0\@4} er}l MWO{WA}
71@)9% G M It d(
PlAD) &P /(\%C e &Q(Af) <A A
— .-

o ndpel = PhA )y 0.

——

Proct . See  hamdenA,  Use
POUAL) < ®E PIAD).

0.

—_—

M Exeveie @ ) M



all

1Ce

the
3 a
ed
l is
are
Iso
1ge
er

it

-
v

tic
we
en

'nt
irs
5a
1€r

nd

shs

LECTURE 8

The Lovasz Local Lemma

The Lemma. Let A, - - - A, be eventsin a probability space. In combinatorial
applications the ‘A; are “bad” events. We wish to show Pr[A A;1> 0 so that there
is a point (coloring, tournament, configuration) x which is good. The basic
probabilistic method of Lecture 1 may be written: i

Counting sieve. If 3, Pr[A;]< 1, then Pr[AA,]> 0. A

There are other simple conditions that ensure Pr [AA]>0.

Independence sieve. If A, , - - - | A, are mutually independent and all Pr [Al<1,
then Pr{AA;1>0.

The Lovasz Local Lemma is a sieve method which allows for some dependence
among the A;. A graph G on vertices {n] (the indices for the A;) is called a
dependency graph for A,, - - - , A, if for all i A, is mutually independent of al
A; with {i, j} ¢ G. (That is, A, is independent of any Boolean function of these A;)

LovAsz Locar LEMMA (Symmetric case). Let A;, - - - | A, be events with depen-
dency graph G such that

Pr[A]=p foralli, deg(i)y<d foralli

and

4dp <1.
Then

Pr[AA;]1>0.

Proof. We show by induction on s that if |S|=s, then for any i

Pr [A,-

For §=(J this is immediate. Renumber for convenience so that i=n, S=
{1,---,s} and {i,x}2 G for x> d. Now

A A}] =2p.
jes

- - Pr [An“il R A‘dlgd%»l R As]
Pr{AA, - - A]=—t0r 7 Aals el
[ , ! ] Pr[Al' . ’AdlAd+1 cr Al
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58 LECTURE 8

We bound the numerator

Pr[An/il ot Ad‘/idﬂ T AS]SPr [Anllidﬂ Tt A:]

=Pr{A.]l=p
as A, is mutually independent of A,,,, - -, A,. We bound the denominator
d
Pr[A,--- AdlAd+l A=l > Pr [AiIAd+l Al
i=1

d
=1~ 2p (Induction)
i=1

i=

Hence we have the quotient
PrA,|A, - - AJ=p/t=2p,

éompleting the induction. Finally
Pr[/fl“'fin]:H Pr[AilAl"'A—ivl]ZH (1-2p)>o0. O
i=1 i=1

The proof is so elementary that it could, and I think should, be taught in a
first course in probability. It has had and continues to have a profound effect on
probabilistic methods.

The diagonal Ramsey function. A lower bound for R(k, k), our first use of the
probabilistic method in Lecture 1, provides a simple application of the Lovisz
Local Lemma. Consider a random two-coloring of K,, with Ag the event “S is
monochromatic,” S ranging over the k-sets of vertices. Define G by placing
{S, T}e G if and only if |[SN T|=2. Then Ay is mutually independent of all A,
with T not adjacent to G, since the A4 give information only about edges outside
of S. Hence G is a dependency graph. (When [SN T|=2 the events As, A are
independent; note however that mutual independence from a family of Ay is far
stronger than pairwise independence with each A;. Recall the old chestnut: I
have two children and at least one is a girl. What is the probability they are both
girls. Conditional on the younger being a girl it is one half. Conditional on the
older being a girl it is one half. Conditional on the disjunction it is one third.
But I digress.) We apply the Lovdsz Local Lemma with p=Pr[Agj=2""% and

d=|{T:|sn T!22}|s(k>( " )

2/\k~2

k n [
4 216
(2)(k—2) b
then R{k, k)> n.

The asymptotics are somewhat disappointing.

CoroLLARY. If




itor

tin a
:ct on

>f the
ovasz
“S is
acing
il A,
itside
T are
is far
wt: I
both
n the
third.
and
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COROLLARY.
R(k, k)>{~§k2"/2(1+o(1)).

This improves the lower bound given in Lecture 1 by a factor of 2 and the
improvement via the deletion method in Lecture 2 (which, oddly, was only
published after the better bound) by a factor of v2. The gap between the upper
and lower bounds has not really been effectively decreased. The lower bound of
Erdos was found in April 1946 (published in 1947) and progress on this difficult
problem has been slow.

The van der Waerden function. Here the improvement is more impressive. Color
[n] randomly. For each arithmetic progression S of size k let A be the event
that S is monochromatic. Let S, T be adjacent in G if they intersect. (In all our
applications the probability space will be a random coloring of some set (. For
Ramsey’s Theorem ) was the edge set of K,,. Events will be not adjacent if they
deal with the coloring on disjoint sets.) Now p=2""% and d < nk as one pro-
gression intersects (exercise) at most nk others. Hence we have the following
theorem.

THEOREM. If 4nk2' ™ <1, then W(k)> n. That is, W(k)>2%/8k

This greatly improves the bound W(k)> 2" of Lecture 1. Still we must in all
honesty mention that W(p)=p2?, for p prime, has been shown by completely
constructive means!

Algorithm? The Lovisz Local Lemma proves the existence of an x satisfying
A A; even when Pr [A A;] may be exponentially small. We have seen in Lecture
4 that when ). Pr{A,]<1 there often is an algorithm to find a specific “good” x.

Open Problem. Can the Lovédsz Local Lemma be implemented by a Good
Algorithm? ’

Let us be more specific. Suppose S,,---, S, <[n] with all ‘}Si]: 10 and all
deg (j) = 10. Two color [n] randomly and let A, be the event that S; 1s monochro-
matic. Let i, i’ be adjacent in the dependency graph if and only if their correspond-
ing sets intersect. Each S, is intersected by at most 90 other S,. We apply the
Lovisz Local Lemma with p=Pr[A;]=2"" and. d = 90. As 4dp <1, Pr[A A]>0
and so there is a two-coloring x for which no S; is monochromatic. Is there a
polynomial (in n) time algorithm for finding such a coloring?

Notice that the Lovész Local Lemma here guarantees the existence of a “needle
in a haystack.” If, say, Sy, -, 8.0 are disjoint a random X is good with
probability at most (1-2"°)"1°, Can we actually find this exponentially small
needle in polynomial time?

Addendum: Joke. Here we give an ironic demonstration of the power of the
Lovész Local Lemma.

THEOREM. Let S, T be finite sets with |T|=8|S|. Then there exists a Sfunction
J: 8~ T which is injective.
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Proof. Let f be a random function. For each {x, y}<= S let A,, be the event
f(x)=f(y). Then Pr[A,]1=1/|T|=p. Let {x, y} and {u, v} be adjacent in the
dependency graph if and only if they intersect. Then the maximal degree in the
dependency graph is d =2(|S]—1). As 4dp <1, Pr[AA,,]> 0 and so there exists
an f for which A—,, for all x, y. That is, f is injective.

When |T|=365 and | W| =23 the “birthday problem” says that f has probability
less than 3 of being injective. When | T| = 8|S| the probability of a random f being
injective is exponentially small. The Counting Sieve proves the existence of an
injective f only when (3)<|7T]. O

Anti van der Waerden. Here is the original use of the Lovasz Local Lemma.

Tueorem. Let k, m satisfy 4m(m—1)(1—1/k)"<1. Let S< R with |S|=m.
Then there exists a k-coloring x: R > [k] so that every translate S+t is k-colored.
That is, for all te T and 1= i<k there exists s€ S with y(s+1)=1i

Without use of the Lovasz Local Lemma no proof is known that gives the
existence of an m =m(k) with this property. Notice a fundamental difference
between the translation and homothety groups. Gallai’s Theorem, a consequence
of van der Waerden’s Theorem, states that for all finite S and all finite colorings
of R there is a monochromatic §'=aS+1.

Proof. First we let B< R be an arbitrary finite set and k-color B so that all
S+1< B have all k colors. Color B randomly. For each t such that S+ 1< B let
A, be the event that S+ ¢ does not have all k colors. Then

- Pr[Ad=sk(1-1/k)"=p.

Let t,t' be adjacent in the dependency graph if and only if S+t and S+ ¢
intersect. With given ¢ this occurs only if #'= +s—5' for distinct s,5'€ S, so
that the dependency graph has degree at most d = m(m —1). The conditions on
k, m are precisely that 4dp < 1. The Lovasz Local Lemma applies and A A, # (J;
there is a k-coloring of B for which all translates of S lying in B have all k
colors.

Compactness. To color all of R we need the Compactness Principle. We state
this in a form convenient for us.

CompPACTNESS PrINCIPLE. Let () be an infinite set, k a positive integer, and let
U be a family of pairs (B, y) where B< Q is finite, y: B~ [k] such that

(i) U is closed under restriction. That is, if (B,y)e U and B'< B then
(B',XIB')E U;

(ii) For all B some (B, y)e U.
Then there exists y:Q - [ k] such that

(B, xlg)e U for all finite B< U.

Proof. Let X be the topological space of all y:Q - [k]. Here we consider [k]
discrete and X has the usual product topology. That is, a basis for the open sets.

is given by the sets {x: x(b;))=a;, 1=i=<s}overall 5,b,,-- -, b,, a,," - -, a,. For
every finite B let Xj be the set of y € X with (B, x|) € U. By (ii) X # &. Splitting
x € X according to x|s gives a finite (|B|*) partition of X into sets both open
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