Markov Chain, part 2

December 12, 2010

1 The gambler's ruin problem

Consider the following problem.
Problem. Suppose that a gambler starts playing a game with an initial $\$ B$ bank roll. The game proceeds in turns, where at the end of each turn the gambler either wins $\$ 1$ with probability p, or loses $\$ 1$ with probability $q=1-p$. The player continues until he or she either makes it to $\$ \mathrm{~N}$, or goes bankrupt with $\$ 0$. Determine the probability that the player eventually reaches the $\$ \mathrm{~N}$.

We can represent this by a Markov chain having $N+1$ states representing the amount of money that the player has: either $\$ 0, \$ 1, \ldots$, or $\$ \mathrm{~N}$.

The transition probabilities are given as follows: $P_{0,0}=1 ; P_{N, N}=1$; and $P_{i, i+1}=p$ and $P_{i, i-1}=q$ for $i=1,2, \ldots, N-1$.

The corresponding transition matrix is

$$
P=\left[\begin{array}{cccccccc}
1 & q & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & q & 0 & 0 & \cdots & 0 & 0 \\
0 & p & 0 & q & 0 & \cdots & 0 & 0 \\
0 & 0 & p & 0 & q & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & q & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & p & 1
\end{array}\right]
$$

We will analyze this problem two different ways: first, we will derive the the probability of winning in an ad hoc way by playing around with
the structure of the problem; and then we will derive the probability more systematically by analyzing the above transition matrix.

1.1 Solution 1

Let P_{i} denote the probability of winning (reaching $\$ \mathrm{~N}$ before going broke), given that we start with $\$$ i. Note that $P_{0}=0$ and $P_{N}=1$.

We observe that

$$
P_{i}=p P_{i+1}+q P_{i-1} .
$$

The term $p P_{i+1}$ here accounts for the case where we win the first turn, and then at the start of the second turn we have $\$(i+1)$; and the term $q P_{i-1}$ accounts for the case where we lose the first turn. We now rewrite this equation, using the fact that $p+q=1$ as follows:

$$
P_{i+1}-P_{i}=\frac{q}{p}\left(P_{i}-P_{i-1}\right) .
$$

And so, for $j=1,2, \ldots, N$ we have

$$
\begin{aligned}
P_{j}-P_{j-1}=\frac{q}{p}\left(P_{j-1}-P_{j-2}\right) & =\left(\frac{q}{p}\right)^{2}\left(P_{j-2}-P_{j-3}\right)=\cdots \\
& =\left(\frac{q}{p}\right)^{j-1}\left(P_{1}-P_{0}\right) \\
& =\left(\frac{q}{p}\right)^{j-1} P_{1}
\end{aligned}
$$

So,

$$
\begin{aligned}
P_{i}=P_{i}-P_{0} & =\left(P_{i}-P_{i-1}\right)+\left(P_{i-1}-P_{i-2}\right)+\cdots+\left(P_{1}-P_{0}\right) \\
& =P_{1} \sum_{j=0}^{i-1}\left(\frac{q}{p}\right)^{j} \\
& =\left\{\begin{aligned}
P_{1} \frac{(q / p)^{i}-1}{(q / p-1}, & \text { if } q \neq p ; \\
i P_{1}, & \text { if } q=p=1 / 2 .
\end{aligned}\right.
\end{aligned}
$$

Note that this holds for $i=0,1,2, \ldots, N$.

To complete our calculations, we need to find P_{1}, and to do this we note that since $P_{N}=1$, and also

$$
P_{N}=\left\{\begin{aligned}
P_{1} \frac{1-(q / p)^{N}}{1-(q / p)}, & \text { if } q \neq q \\
P_{1} N, & \text { if } q=p=1 / 2
\end{aligned}\right.
$$

we have that

$$
P_{1}=\left\{\begin{aligned}
\frac{1-(q / p)}{1-(q / p)^{N},}, & \text { if } q \neq p \\
1 / N, & \text { if } q=p=1 / 2
\end{aligned}\right.
$$

So,

$$
P_{i}=\left\{\begin{aligned}
\frac{1-(q / p)^{i}}{1-(q / p)^{N},} & \text { if } q \neq p \\
i / N, & \text { if } q=p=1 / 2
\end{aligned}\right.
$$

1.2 Solution 2

It turns out that we can also determine those probabilities P_{i} by working with the matrix P : the condition that starting with $\$ i$ we eventually reach $\$ N$ and stop is equivalent to a path through the transition diagram for the Markov chain starting at the node labeled i and ending at the node labeled N. Since once we reach node N we stay there (it has no edges to any other node), the probability we seek should be the entry in the $(i+1)$ st column and $(N+1)$ st row of the matrix

$$
Q:=\lim _{n \rightarrow \infty} P^{n}
$$

Now, it's pretty clear that if we iteratively travel from node to node in the transition graph, we must eventually wind up in node 0 or node N, where we will remain stuck. So, we should have that

$$
Q=\left[\begin{array}{cccccccc}
1 & 1-a_{1} & 1-a_{2} & 1-a_{3} & 1-a_{4} & \cdots & 1-a_{N-1} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & a_{1} & a_{2} & a_{3} & a_{4} & \cdots & a_{N-1} & 1
\end{array}\right] .
$$

Clearly, then, P has only $\lambda=1$ as an eigenvalue of magnitude 1 , and that eigenvalue occurs to multiplicity at least 2 since the first and last columns of P (or even Q) are eigenvectors. Note that the other columns of Q are linear combinations of those two principal eigenvectors.

It remains to solve for the a_{1}, \ldots, a_{N-1} : first, note that $P Q=Q$ will not give us anything; but strangely enough, $Q P=Q$ does tell us something about the a_{i} 's - it tells us that

$$
1-a_{1}=q+\left(1-a_{3}\right) p, q\left(1-a_{N-2}\right)=1-a_{N-1},
$$

and

$$
a_{i}=q a_{i-1}+p a_{i+1}, \text { for } i=2, \ldots, N-2 .
$$

If you work out these equations, you find that

$$
a_{i}=\left\{\begin{aligned}
\frac{1-(q / p)^{i}}{1-(q / p)^{N}}, & \text { if } q \neq p \\
i / N, & \text { if } q=p=1 / 2
\end{aligned}\right.
$$

Since a_{i} was the entry in the $(i+1)$ st column, $(N+1)$ st row of Q, which we agreed was the probability P_{i}, we are now done.

