Markov Chains, part I

December 8, 2010

1 Introduction

A Markov Chain is a sequence of random variables X_{0}, X_{1}, \ldots, where each $X_{i} \in \mathcal{S}$, such that
$\mathbb{P}\left(X_{i+1}=s_{i+1} \mid X_{i}=s_{i}, X_{i-1}=s_{i-1}, \ldots, X_{0}=s_{0}\right)=\mathbb{P}\left(X_{i+1}=s_{i+1} \mid X_{i}=s_{i}\right) ;$
that is, the value of the next random variable in dependent at most on the value of the previous random variable.

The set \mathcal{S} here is what we call the "state space", and it can be either continuous or discrete (or a mix); however, in our discussions we will take \mathcal{S} to be discrete, and in fact we will always take

$$
\mathcal{S}=\{1,2, \ldots, N\}
$$

Since X_{t+1} only depends on X_{t}, it makes sense to define "transition probabilities"

$$
P_{i, j}:=\mathbb{P}\left(X_{t+1}=j \mid X_{t}=i\right),
$$

which completely determine the dynamics of the Markov chain... well, almost: we need to either be given X_{0}, or we to choose its value according to some distribution on the state space. In the theory of Hidden Markov Models, one has a set of probabilities $\pi_{1}, \ldots, \pi_{N}, \pi_{1}+\cdots+\pi_{N}=1$, such that $\mathbb{P}\left(X_{0}=i\right)=\pi_{i}$; however, in some other applications, such as in the Gambler's Ruin Problem discussed in another note, we start with the value for X_{0}.

Ok, so how could we generate a sequence X_{0}, X_{1}, \ldots, given X_{0} and given the $P_{i, j}$'s? Well, suppose $X_{0}=i$. Then, we choose X_{1} at random from $\{1,2, \ldots, N\}$, where $\mathbb{P}\left(X_{1}=j\right)=P_{i, j}$. Next, we select X_{2} at random according to the distribution $\mathbb{P}\left(X_{2}=k\right)=P_{j, k}$. We then continue the process.

1.1 Graphical representation

Sometimes, a more convenient way to represent a Markov chain is to use a transition diagram, which is a graph on N vertices that represent the states. The edges are directed, and each corresponds to a transition probability $P_{i, j}$; however, not all the N^{2} edges are necessarily in the graph - when an edge is missing, it means that the corresponding $P_{i, j}$ has value 0 .

Here is an example: suppose that $N=3$, and suppose

$$
P_{1,1}=1 / 3, P_{1,2}=2 / 3, P_{2,1}=1 / 2, P_{2,3}=1 / 2, P_{3,1}=1 .
$$

Then, the corresponding transition diagram looks like this

1.2 Matrix representation, and population distributions

It is also convenient to collect together the $P_{i, j}$'s into an $N \times N$ matrix; and, I will do this here a little bit backwards from how you might see it presented in other books, for reasons that will become clear later on: form the matrix P whose (j, i) entry is $P_{i, j}$; so, the i th column of the matrix represents all the transition probabilities out of node i, while the j th row represents all transition probabilities into node j. For example, the matrix corresponding to the example in the previous subsection is

$$
P=\left[\begin{array}{lll}
P_{1,1} & P_{2,1} & P_{3,1} \\
P_{1,2} & P_{2,2} & P_{3,2} \\
P_{1,3} & P_{2,3} & P_{3,3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / 3 & 1 / 2 & 1 \\
2 / 3 & 0 & 0 \\
0 & 1 / 2 & 0
\end{array}\right] .
$$

Notice that the sum of entries down a column is 1 .
Now we will reinterpret this matrix in terms of population distributions: suppose that the states $1, \ldots, N$ represent populations - say state i represents "country i ". Associated to each of these populations, we let $p_{i}(t)$ denote the fraction of some total population residing in country i at time t. In transitioning from a population makeup at time t to time $t+1$, some fraction of the population in each state will be sent to the other states; the fraction
of the population at state i at time t sent to state j at time $t+1$ will be $P_{i, j}$. So, the fraction of the total population in state j at time $t+1$ will be

$$
\sum_{i=1}^{N} p_{i}(t) P_{i, j}
$$

It turns out that this can be very compactly represented by a matrix product: letting P be the matrix as described above, we have that

$$
P\left[\begin{array}{c}
p_{1}(t) \\
p_{2}(t) \\
\vdots \\
p_{N}(t)
\end{array}\right]=\left[\begin{array}{c}
p_{1}(t+1) \\
p_{2}(t+1) \\
\vdots \\
p_{N}(t+1)
\end{array}\right] .
$$

This brings us now to a few natural questions, along with their answers:

- Is there a choice for $p_{i}(t)$ such that the population is "stable under the transformation P "? That is to say, is there choice for $p_{i}(t)$ that is an eigenvector for eigenvalue $\lambda=1$? Answer: Yes! In fact, we will give a nice construction.
- Is it always the case that iterating the above matrix equation, producing $\vec{p}(t), \vec{p}(t+1), \vec{p}(t+2), \ldots$, we reach equilibrium regardless of the choice of starting distribution $\vec{p}(t)$? Answer: No!
- Is there more than one equilibrium distribution? Answer: There could be, as we shall see.
- How quickly does the process converge to equilibrium, assuming it converges at all? Answer: Turns out that it depends on the second largest (in magnitude) eigenvalue.
- Is there a simple general condition guaranteeing that the equilibrium distribution is unique, and that we always converge to it no matter what our starting distribution $\vec{p}(0)$ happens to be? Answer: Yes! And it goes by the name "Perron-Frobenius Theorem".

2 Convergence to equilibrium

The first thing we will see is that the matrix P has $\lambda=1$ as an eigenvalue: since the transpose of P, denoted P^{t} always has row sum equal to 1 , it follows that

$$
P^{t}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

So, 1 is an eigenvalue for P. Since P and P^{t} have the same eigenvalues, it follows that $\lambda=1$ must also be an eigenvalue for P.

Next, we want to pick out a vector $\vec{p}(0)$ that is an eigenvector for $\lambda=1$: basically, we begin by selecting $\vec{q}(0)$ to be $(1 / N, 1 / N, \ldots, 1 / N)$, and then compute $\vec{q}(1), \vec{q}(2), \ldots$; that is, we compute the sequence

$$
\left[\begin{array}{c}
1 / N \\
1 / N \\
1 / N \\
\vdots \\
1 / N
\end{array}\right], P\left[\begin{array}{c}
1 / N \\
1 / N \\
1 / N \\
\vdots \\
1 / N
\end{array}\right], P^{2}\left[\begin{array}{c}
1 / N \\
1 / N \\
1 / N \\
\vdots \\
1 / N
\end{array}\right], \ldots
$$

Next, we compute the average of the first several of these; that is, we let

$$
\vec{r}_{0}:=\vec{q}(0), \vec{r}_{1}:=\frac{\vec{q}(0)+\vec{q}(1)}{2}, \ldots, r_{k}:=\frac{\vec{q}(0)+\vec{q}(1)+\cdots+\vec{q}(k)}{k+1}, \ldots
$$

And now it turns out that the terms in this sequence behave more and more like eigenvectors the further out one goes. To see this, notice that

$$
P \vec{r}_{k}=P \frac{\vec{q}(0)+\vec{q}(1)+\cdots+\vec{q}(k)}{k+1}=\frac{\vec{q}(1)+\vec{q}(2)+\cdots+\vec{q}(k+1)}{k+1},
$$

which is pretty close to our expression for \vec{r}_{k}; in fact, the difference between \vec{r}_{k} and $P \vec{r}_{k}$ is just the vector

$$
\begin{equation*}
\frac{\vec{q}(k+1)-\vec{q}(0)}{k+1} . \tag{1}
\end{equation*}
$$

Now, how big are the coordinates of this vector? Well, we know that since P is a transition matrix, if the sum of entries is \vec{q} is 1 , then the same will be
true of $P \vec{q}$, which means that coordinates of $\vec{q}(k+1)$ and $\vec{q}(0)$ must all be ≤ 1. It follows, then, that this vector (1) has all coordinates bounded from above by $1 /(k+1)$ in absolute value.

What this means is that if the sequence $\vec{r}_{0}, \vec{r}_{1}, \ldots$ converges to some vector \vec{r}, then \vec{r} must be an eigenvector.

Well, it's not obvious that this sequence of vectors should actually converge; but that's ok, because all we really need is that there is a subsequence of these vectors that converges. And, it is a standard fact of Analysis that every bounded, infinite sequence of vectors has a convergent subsequence in our case, converging to an eigenvector of P for $\lambda=1$.

3 The Perron-Frobenius Theorem

Although we now know that there always exists an equilibrium distribution, it doesn't follow that every initial population $\vec{p}(0)$ necessarily converges to it when we iteratively multiply it by P on the left. A good example here is represented by the following transition diagram:

The transition matrix corresponding to this graph is

$$
P:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Starting with initial distribution (1,0), repeated iteration leads us to the 2-cycle

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right], \ldots
$$

Furthermore, the equilibrium distribution, if it even exists, need not be unique. One example of this is just a Markov Chain having two states, where each state transitions only to itself, and with probability 1 . In this case, the transition matrix is just the identity matrix, which of course has every non-zero vector as an eigenvector.

The following theorem will imply general conditions guaranteeing convergence to a unique equilibrium:

Theorem 1 (Perron-Frobenius) Suppose that A is an $N \times N$ matrix with non-negative entries such that some positive integer power of A (i.e. A^{k}, where $k \in \mathbb{Z}_{+}$) has all positive entries. Then, we must have that
(i) A has a positive real number eigenvalue λ that is larger in magnitude than all other eigenvalues of A.
(ii) That eigenvalue λ is simple, meaning that the characteristic polynomial of A has λ as a root with multiplicity 1.
(iii) There is an eigenvector of A corresponding to eigenvalue λ whose entries are all strictly positive; furthermore, in light of the fact that λ has multiplicity 1, all other eigenvectors corresponding to this eigenvalue λ must be a scalar multiple of it.

Before we give the proof of this very important theorem, we give a corollary:

Corollary 1 Suppose that P is a transition matrix such that P^{k} has all positive entries for some $k \geq 1$. Then, $\lambda=1$ is the largest eigenvalue of P in absolute value, and it is a simple root (multiplicity 1) of the characteristic polynomial of A. Furthermore, given any initial population vector $\vec{p}(0)$, whose sum of entries is 1 , we have that $\vec{p}(0), \vec{p}(1), \vec{p}(2), \ldots$ converges to the unique equilibrium distribution \vec{p}.

3.1 Proof of the corollary

First, we note that if α is an eigenvalue of P, then $\alpha \leq 1$; for, if \vec{v} is its corresponding eigenvector, then from the fact that P^{n} is also a transition matrix (sum down the columns is 1 , entries are all between 0 and 1), we have that $P^{n} \vec{v}=\alpha^{n} \vec{v}$ is a bounded vector for all $n=1,2, \ldots-$ so, α couldn't satisfy $|\alpha|>1$, since that would lead to unbounded growth.

Of course, $\lambda=1$ is an eigenvalue of P, and as long as P^{k} is a positive matrix for some k, Perron-Frobenius tells us that all other eigenvalues must have magnitude strictly smaller than 1 . Now we find the Jordan Canonical Form decomposition of the matrix P, which has the form

$$
P=M^{-1}\left[\begin{array}{llll}
B_{1} & & & \\
& B_{2} & & \\
& & \ddots & \\
& & & B_{k}
\end{array}\right] M
$$

where the B_{i} represent square sub-matrices of the form

$$
B_{i}=[\alpha] \text { or }\left[\begin{array}{ll}
\alpha & 1 \\
0 & \alpha
\end{array}\right] \text { or }\left[\begin{array}{ccc}
\alpha & 1 & 0 \\
0 & \alpha & 1 \\
0 & 0 & \alpha
\end{array}\right] \text { or } \cdots
$$

where α is one of the eigenvalues of P. We reserve B_{1} to be the 1×1 block corresponding to eigenvalue 1 ; from the simplicity of $\lambda=1$, as given to us by Perron-Frobenius, we have that this is the only block corresponding to 1 and that all the other eigenvalues are of strictly smaller magnitude. From this, and a little work, one can show that B_{i}^{n} converges to a 0 block matrix when $i=2,3, \ldots, k$; and so,

$$
\lim _{n \rightarrow \infty} P^{n}=M^{-1}\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right] M
$$

When you work this matrix out, what you find is that each row is a scalar multiple of the first row. Since the sum down each column must equal 1, this means that every entry in that first row must be equal; in other words, this limit matrix has the form

$$
\left[\begin{array}{ccccc}
c_{1} & c_{1} & c_{1} & \cdots & c_{1} \\
c_{2} & c_{2} & c_{3} & \cdots & c_{2} \\
c_{3} & c_{3} & c_{3} & \cdots & c_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
c_{N} & c_{N} & c_{N} & \cdots & c_{N}
\end{array}\right] .
$$

From this it follows that for any vectors \vec{v} whose sum of entries is 1 ,

$$
\lim _{n \rightarrow \infty} P^{n} \vec{v}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{N}
\end{array}\right]
$$

It follows that we always settle down to the same distribution - the equilibrium distribution, regardless of what \vec{v} happens to be, so long as its entries sum to 1 . This basically completes the proof of the corollary.

3.2 Proof of Perron-Frobenius

We will use the notation $B>0$ to indicate that all the entries of a matrix B are positive, and will use the notation $B \geq 0$ to indicate that all the entries are at least 0 .

We first note that if $A^{k}>0$ then since $A \geq 0$, we must have $A^{k+1}, A_{k+2}, \ldots>$ 0 as well.

Now suppose, for the time being, we could prove the Perron-Frobenius theorem for when B is a positive matrix, instead of the more general case for when B^{k} is a positive matrix; in particular, suppose we can show that the largest eigenvalue of B is always a positive real number. We then want to conclude that Perron-Frobenius holds in the general case (where a matrix A need not be a positive matrix, but that $A^{k}>0$ for some $k \geq 1$): well, first note that if α is that largest eigenvalue of A, then α^{k+j} must be the largest eigenvalue of $A^{k+j}, j=0,1,2, \ldots$, in magnitude. By Perron-Frobenius in the case of a positive matrix B, since $B=A^{k+j}$ is a positive matrix we conclude that α^{k+j} is a positive real number for each $j=0,1,2, \ldots$. The only way this could happen, even just for both $j=0$ and $j=1$, is if α itself is a positive real number.

So, to prove Perron-Frobenius in general, then, it suffices to prove it just for the case where A is a positive matrix, and that is the case upon which we shall now focus our attention.

Now we will show that A even has a positive eigenvalue: consider the collection of all pairs (α, \vec{v}), where $\alpha>0$ and \vec{v} is a vector with all positive entries that is not identically 0 , such that $A \vec{v} \geq \alpha \vec{v}$. That is to say, if we let $\vec{v}=\left(v_{1}, \ldots, v_{N}\right)$, then

$$
A\left[\begin{array}{c}
v_{1} \tag{2}\\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right]=\alpha\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{N}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{N}
\end{array}\right]
$$

Among all such pairs, let (λ, \vec{w}) be one for which $\alpha=\lambda>0$ is maximal. Now, if the vector of ε_{i} 's corresponding for $\alpha=\lambda$ is $\overrightarrow{0}$, then \vec{w} is an eigenvector corresponding to $\lambda>0$; on the other hand, if at least one of those ε_{i} 's is non-zero (and hence positive), then letting $\vec{y}=\left(y_{1}, \ldots, y_{N}\right)$ be the vector $A \vec{w}$,
and applying A to both sides of (2) in the case $\alpha=\lambda$ and $\vec{v}=\vec{w}$, we get

$$
A \vec{y}=\lambda \vec{y}+A\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{N}
\end{array}\right]
$$

Now, this last vector $A \vec{\varepsilon}$ clearly has all positive entries, since at least one ε_{i} is non-zero and since A itself is a positive matrix. What this means is that we can we could have increased λ slightly to λ^{\prime}, and found a vector \vec{z} such that $A \vec{z} \geq \lambda^{\prime} \vec{z}$. In other words, $\lambda>0$ must not have been maximal, which is a contradiction. So, we are forced to conclude that all the ε_{i} 's are 0 and that \vec{w} is an eigenvector.

Next, we show that all other eigenvalues of A are at most as large as λ : suppose that $\lambda^{\prime} \neq \lambda$ is any other eigenvalue of A, and suppose that $\vec{x}=\left(x_{1}, \ldots, x_{N}\right)$ is its associated eigenvector. It fairly obvious from the triangle inequality that since A has all positive entries, each entry of $A \overrightarrow{|x|}=$ $A\left(\left|x_{1}\right|, \ldots,\left|x_{N}\right|\right)$ is at least as large (in absolute value) as the corresponding entry of $A \vec{x}=\lambda^{\prime} \vec{x}$; and so, if we let $\lambda^{\prime \prime}>0$ denote the largest positive real number such that $A|\vec{x}| \geq \lambda^{\prime \prime}|x|$, we must have that

$$
\left|\lambda^{\prime}\right| \leq \lambda^{\prime \prime} \leq \lambda .
$$

We now show that all other eigenvalues are strictly smaller in magnitude than λ : basically, if we had that $\left|\lambda^{\prime}\right|=\lambda^{\prime \prime}=\lambda$, then if $A_{i, j}$ denotes the i, j entry of A, we will have that

$$
\left|\sum_{j=1}^{N} A_{i, j} x_{j}\right|=|\lambda| \cdot\left|x_{i}\right|=\sum_{j=1}^{N} A_{i, j}\left|x_{j}\right| .
$$

And the only way that that could happen is if all the x_{j} 's "point in the same direction", by which I mean that there exists a complex number $\omega \neq 0$ such that

$$
\text { For all } j=1,2, \ldots, N, x_{j}=\omega u_{j}, u_{j} \in \mathbb{R}_{+}
$$

Since \vec{u} is a positive vector, in order for

$$
A \vec{u}=A\left(\omega^{-1} \vec{x}\right)=\omega^{-1} \lambda^{\prime} \vec{x}=\lambda^{\prime} \vec{u}
$$

we must have $\lambda^{\prime}>0$, and then λ^{\prime} either equals λ or is strictly smaller than it.

Lastly we show that this largest eigenvalue λ has multiplicty 1 : there are two ways that λ can fail to have multiplicity 1 . Either there are two or more linearly independent eigenvectors corresponding to λ; or else there is a single Jordan Block in the Jordan Canonical Form decomposition of A that has two or more rows and columns.

Suppose first that A has two linearly independent eigenvectors \vec{v} and \vec{w} ccorresponding to λ, one of which - say it is \vec{v} - is a vector with all positive entries (which we know exists from the arguments above). Then, it is clear that any linear combination of \vec{v} and \vec{w} is also an eigenvector; and, by choosing coefficients δ_{1} and δ_{2} appropriately, it is easy to see that we can create a non-zero, non-negative vector $\delta_{1} \vec{v}+\delta_{2} \vec{w}$ with the property that one of its coordinates is 0 . But now if we apply A (which has all positive entries) to this vector, we will produce a vector with all positive entries; hence, that $\delta_{1} \vec{v}+\delta_{2} \vec{w}$ could not have been an eigenvector, because that 0 entry should have remained 0 upon multiplying through by A.

Finally, suppose that there is only one Jordan Block associated with λ, and that it is 2×2, or 3×3, etc. Consider the matrix $B=\lambda^{-1} A$. The eigenvalues of this matrix are basically just λ^{-1} times the eigenvalues of A; and, that corresponding Jordan Block we aim to eliminate will correspond to an eigenvalue $1=\lambda^{-1} \lambda$ for B. The analogue of that Jordan Block for B will thus be

$$
\left[\begin{array}{cc}
1 & 1 / \lambda \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ccc}
1 & 1 / \lambda & 0 \\
0 & 1 & 1 / \lambda \\
0 & 0 & 1
\end{array}\right] \text { or } \cdots,
$$

Taking high powers of this block will lead to unbounded growth; for example

$$
\left[\begin{array}{cc}
1 & 1 / \lambda \tag{3}\\
0 & 1
\end{array}\right]^{n}=\left[\begin{array}{cc}
1 & n / \lambda \\
0 & 1
\end{array}\right]
$$

All the other Jordan Blocks that arise for when B is put into Jordan Canonical Form will correspond to eigenvalues of magnitude smaller than 1 ; and so, when we compute high powers of them, they will converge to 0 . It follows,
then, that

$$
\lim _{n \rightarrow \infty} B^{n}=M^{-1}\left[\begin{array}{cccc}
C^{n} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right] M
$$

where C^{n} has the form (3), or corresponding $3 \times 3,4 \times 4, \ldots$ analogue.
Now, this middle $N \times N$ matrix sandwiched between M^{-1} and M can be interpreted geometrically as just the transformation B^{n} with respect to a basis determined by the matrix M; and we see that using this new basis we must have a vector that grows in length the more times we multiply it by B. Clearly this means that as $n \rightarrow \infty$ the largest entry of the matrix B^{n} has unbounded growth. We now show that this is a contradiction: since the largest eigenvalue (in magnitude) of B is 1 , and since B is a positive matrix, we know from the first part of Perron-Frobenius that there exists an eigenvector \vec{q} with all positive entries such that $B \vec{q}=\vec{q}$. We must also have, then, that $B^{n} \vec{q}=\vec{q}$ for all $n=1,2,3, \ldots$ as well. This, however, is impossible, since if the i th row of B^{n} is unbounded for infinitely many n we will have that the i th coordinate of $B^{n} \vec{q}$ should likewise be unbounded (multiply $B^{n} \vec{q}$ and check this for yourself). This completes the proof of Perron-Frobenius, since we have now basically eliminated those 2×2 or 3×3, etc. blocks.

