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1 Introduction

A Markov Chain is a sequence of random variables X0, X1, ..., where each
Xi ∈ S, such that

P(Xi+1 = si+1 | Xi = si, Xi−1 = si−1, ..., X0 = s0) = P(Xi+1 = si+1 | Xi = si);

that is, the value of the next random variable in dependent at most on the
value of the previous random variable.

The set S here is what we call the “state space”, and it can be either
continuous or discrete (or a mix); however, in our discussions we will take S
to be discrete, and in fact we will always take

S = {1, 2, ..., N}.

Since Xt+1 only depends on Xt, it makes sense to define “transition prob-
abilities”

Pi,j := P(Xt+1 = j | Xt = i),

which completely determine the dynamics of the Markov chain... well, al-
most: we need to either be given X0, or we to choose its value according
to some distribution on the state space. In the theory of Hidden Markov
Models, one has a set of probabilities π1, ..., πN , π1 + · · · + πN = 1, such
that P(X0 = i) = πi; however, in some other applications, such as in the
Gambler’s Ruin Problem discussed in another note, we start with the value
for X0.

Ok, so how could we generate a sequence X0, X1, ..., given X0 and given
the Pi,j’s? Well, suppose X0 = i. Then, we choose X1 at random from
{1, 2, ..., N}, where P(X1 = j) = Pi,j . Next, we select X2 at random accord-
ing to the distribution P(X2 = k) = Pj,k. We then continue the process.
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1.1 Graphical representation

Sometimes, a more convenient way to represent a Markov chain is to use a
transition diagram, which is a graph on N vertices that represent the states.
The edges are directed, and each corresponds to a transition probability Pi,j;
however, not all the N2 edges are necessarily in the graph – when an edge is
missing, it means that the corresponding Pi,j has value 0.

Here is an example: suppose that N = 3, and suppose

P1,1 = 1/3, P1,2 = 2/3, P2,1 = 1/2, P2,3 = 1/2, P3,1 = 1.

Then, the corresponding transition diagram looks like this

/.-,()*+1 2/3 //

1/3

-- /.-,()*+2 1/2 //

1/2

ee /.-,()*+3
1

tt

1.2 Matrix representation, and population distribu-
tions

It is also convenient to collect together the Pi,j’s into an N ×N matrix; and,
I will do this here a little bit backwards from how you might see it presented
in other books, for reasons that will become clear later on: form the matrix
P whose (j, i) entry is Pi,j; so, the ith column of the matrix represents all
the transition probabilities out of node i, while the jth row represents all
transition probabilities into node j. For example, the matrix corresponding
to the example in the previous subsection is

P =





P1,1 P2,1 P3,1

P1,2 P2,2 P3,2

P1,3 P2,3 P3,3



 =





1/3 1/2 1
2/3 0 0
0 1/2 0



 .

Notice that the sum of entries down a column is 1.
Now we will reinterpret this matrix in terms of population distributions:

suppose that the states 1, ..., N represent populations – say state i represents
“country i”. Associated to each of these populations, we let pi(t) denote
the fraction of some total population residing in country i at time t. In
transitioning from a population makeup at time t to time t+1, some fraction
of the population in each state will be sent to the other states; the fraction
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of the population at state i at time t sent to state j at time t+1 will be Pi,j.
So, the fraction of the total population in state j at time t + 1 will be

N
∑

i=1

pi(t)Pi,j.

It turns out that this can be very compactly represented by a matrix product:
letting P be the matrix as described above, we have that

P











p1(t)
p2(t)

...
pN(t)











=











p1(t + 1)
p2(t + 1)

...
pN(t + 1)











.

This brings us now to a few natural questions, along with their answers:

• Is there a choice for pi(t) such that the population is “stable under the
transformation P”? That is to say, is there choice for pi(t) that is an
eigenvector for eigenvalue λ = 1? Answer: Yes! In fact, we will give
a nice construction.

• Is it always the case that iterating the above matrix equation, producing
~p(t), ~p(t + 1), ~p(t + 2), ..., we reach equilibrium regardless of the choice
of starting distribution ~p(t)? Answer: No!

• Is there more than one equilibrium distribution? Answer: There could
be, as we shall see.

• How quickly does the process converge to equilibrium, assuming it con-
verges at all? Answer: Turns out that it depends on the second largest
(in magnitude) eigenvalue.

• Is there a simple general condition guaranteeing that the equilibrium
distribution is unique, and that we always converge to it no matter
what our starting distribution ~p(0) happens to be? Answer: Yes!
And it goes by the name “Perron-Frobenius Theorem”.
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2 Convergence to equilibrium

The first thing we will see is that the matrix P has λ = 1 as an eigenvalue:
since the transpose of P , denoted P t always has row sum equal to 1, it follows
that

P t











1
1
...
1











=











1
1
...
1











So, 1 is an eigenvalue for P . Since P and P t have the same eigenvalues, it
follows that λ = 1 must also be an eigenvalue for P .

Next, we want to pick out a vector ~p(0) that is an eigenvector for λ = 1:
basically, we begin by selecting ~q(0) to be (1/N, 1/N, ..., 1/N), and then
compute ~q(1), ~q(2), ...; that is, we compute the sequence















1/N
1/N
1/N

...
1/N















, P















1/N
1/N
1/N

...
1/N















, P 2















1/N
1/N
1/N

...
1/N















, ...

Next, we compute the average of the first several of these; that is, we let

~r0 := ~q(0), ~r1 :=
~q(0) + ~q(1)

2
, ..., rk :=

~q(0) + ~q(1) + · · ·+ ~q(k)

k + 1
, ...

And now it turns out that the terms in this sequence behave more and more
like eigenvectors the further out one goes. To see this, notice that

P~rk = P
~q(0) + ~q(1) + · · · + ~q(k)

k + 1
=

~q(1) + ~q(2) + · · ·+ ~q(k + 1)

k + 1
,

which is pretty close to our expression for ~rk; in fact, the difference between
~rk and P~rk is just the vector

~q(k + 1) − ~q(0)

k + 1
. (1)

Now, how big are the coordinates of this vector? Well, we know that since
P is a transition matrix, if the sum of entries is ~q is 1, then the same will be
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true of P~q, which means that coordinates of ~q(k + 1) and ~q(0) must all be
≤ 1. It follows, then, that this vector (1) has all coordinates bounded from
above by 1/(k + 1) in absolute value.

What this means is that if the sequence ~r0, ~r1, ... converges to some vector
~r, then ~r must be an eigenvector.

Well, it’s not obvious that this sequence of vectors should actually con-
verge; but that’s ok, because all we really need is that there is a subsequence
of these vectors that converges. And, it is a standard fact of Analysis that
every bounded, infinite sequence of vectors has a convergent subsequence –
in our case, converging to an eigenvector of P for λ = 1.

3 The Perron-Frobenius Theorem

Although we now know that there always exists an equilibrium distribution,
it doesn’t follow that every initial population ~p(0) necessarily converges to
it when we iteratively multiply it by P on the left. A good example here is
represented by the following transition diagram:

/.-,()*+1
1

%%
/.-,()*+2

1

ee

The transition matrix corresponding to this graph is

P :=

[

0 1
1 0

]

.

Starting with initial distribution (1, 0), repeated iteration leads us to the
2-cycle

[

1
0

]

,

[

0
1

]

,

[

1
0

]

, ...

Furthermore, the equilibrium distribution, if it even exists, need not be
unique. One example of this is just a Markov Chain having two states,
where each state transitions only to itself, and with probability 1. In this
case, the transition matrix is just the identity matrix, which of course has
every non-zero vector as an eigenvector.

The following theorem will imply general conditions guaranteeing conver-
gence to a unique equilibrium:
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Theorem 1 (Perron-Frobenius) Suppose that A is an N ×N matrix with
non-negative entries such that some positive integer power of A (i.e. Ak,
where k ∈ Z+) has all positive entries. Then, we must have that

(i) A has a positive real number eigenvalue λ that is larger in magnitude
than all other eigenvalues of A.

(ii) That eigenvalue λ is simple, meaning that the characteristic polyno-
mial of A has λ as a root with multiplicity 1.

(iii) There is an eigenvector of A corresponding to eigenvalue λ whose
entries are all strictly positive; furthermore, in light of the fact that λ has
multiplicity 1, all other eigenvectors corresponding to this eigenvalue λ must
be a scalar multiple of it.

Before we give the proof of this very important theorem, we give a corol-
lary:

Corollary 1 Suppose that P is a transition matrix such that P k has all
positive entries for some k ≥ 1. Then, λ = 1 is the largest eigenvalue of P
in absolute value, and it is a simple root (multiplicity 1) of the characteristic
polynomial of A. Furthermore, given any initial population vector ~p(0), whose
sum of entries is 1, we have that ~p(0), ~p(1), ~p(2), ... converges to the unique
equilibrium distribution ~p.

3.1 Proof of the corollary

First, we note that if α is an eigenvalue of P , then α ≤ 1; for, if ~v is its
corresponding eigenvector, then from the fact that P n is also a transition
matrix (sum down the columns is 1, entries are all between 0 and 1), we have
that P n~v = αn~v is a bounded vector for all n = 1, 2, ... – so, α couldn’t satisfy
|α| > 1, since that would lead to unbounded growth.

Of course, λ = 1 is an eigenvalue of P , and as long as P k is a positive
matrix for some k, Perron-Frobenius tells us that all other eigenvalues must
have magnitude strictly smaller than 1. Now we find the Jordan Canonical
Form decomposition of the matrix P , which has the form

P = M−1











B1

B2

. . .

Bk











M,
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where the Bi represent square sub-matrices of the form

Bi = [α] or

[

α 1
0 α

]

or





α 1 0
0 α 1
0 0 α



 or · · · ,

where α is one of the eigenvalues of P . We reserve B1 to be the 1 × 1 block
corresponding to eigenvalue 1; from the simplicity of λ = 1, as given to us
by Perron-Frobenius, we have that this is the only block corresponding to 1
and that all the other eigenvalues are of strictly smaller magnitude. From
this, and a little work, one can show that Bn

i converges to a 0 block matrix
when i = 2, 3, ..., k; and so,

lim
n→∞

P n = M−1











1 0 0 · · · 0
0 0 0 · · · 0

0 0 0
. . .

...
0 0 0 · · · 0











M.

When you work this matrix out, what you find is that each row is a scalar
multiple of the first row. Since the sum down each column must equal 1, this
means that every entry in that first row must be equal; in other words, this
limit matrix has the form















c1 c1 c1 · · · c1

c2 c2 c3 · · · c2

c3 c3 c3 · · · c3

...
...

...
. . .

...
cN cN cN · · · cN















.

From this it follows that for any vectors ~v whose sum of entries is 1,

lim
n→∞

P n~v =











c1

c2

...
cN











.

It follows that we always settle down to the same distribution – the equilib-
rium distribution, regardless of what ~v happens to be, so long as its entries
sum to 1. This basically completes the proof of the corollary.
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3.2 Proof of Perron-Frobenius

We will use the notation B > 0 to indicate that all the entries of a matrix B
are positive, and will use the notation B ≥ 0 to indicate that all the entries
are at least 0.

We first note that if Ak > 0 then since A ≥ 0, we must have Ak+1, Ak+2, ... >
0 as well.

Now suppose, for the time being, we could prove the Perron-Frobenius
theorem for when B is a positive matrix, instead of the more general case for
when Bk is a positive matrix; in particular, suppose we can show that the
largest eigenvalue of B is always a positive real number. We then want to
conclude that Perron-Frobenius holds in the general case (where a matrix A
need not be a positive matrix, but that Ak > 0 for some k ≥ 1): well, first
note that if α is that largest eigenvalue of A, then αk+j must be the largest
eigenvalue of Ak+j, j = 0, 1, 2, ..., in magnitude. By Perron-Frobenius in the
case of a positive matrix B, since B = Ak+j is a positive matrix we conclude
that αk+j is a positive real number for each j = 0, 1, 2, .... The only way this
could happen, even just for both j = 0 and j = 1, is if α itself is a positive
real number.

So, to prove Perron-Frobenius in general, then, it suffices to prove it just
for the case where A is a positive matrix, and that is the case upon which
we shall now focus our attention.

Now we will show that A even has a positive eigenvalue: consider the
collection of all pairs (α,~v), where α > 0 and ~v is a vector with all positive
entries that is not identically 0, such that A~v ≥ α~v. That is to say, if we let
~v = (v1, ..., vN), then

A











v1

v2

...
vN











= α











v1

v2

...
vN











+











ε1

ε2

...
εN











. (2)

Among all such pairs, let (λ, ~w) be one for which α = λ > 0 is maximal. Now,
if the vector of εi’s corresponding for α = λ is ~0, then ~w is an eigenvector
corresponding to λ > 0; on the other hand, if at least one of those εi’s is
non-zero (and hence positive), then letting ~y = (y1, ..., yN) be the vector A~w,
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and applying A to both sides of (2) in the case α = λ and ~v = ~w, we get

A~y = λ~y + A











ε1

ε2

...
εN











.

Now, this last vector A~ε clearly has all positive entries, since at least one εi

is non-zero and since A itself is a positive matrix. What this means is that
we can we could have increased λ slightly to λ′, and found a vector ~z such
that A~z ≥ λ′~z. In other words, λ > 0 must not have been maximal, which
is a contradiction. So, we are forced to conclude that all the εi’s are 0 and
that ~w is an eigenvector.

Next, we show that all other eigenvalues of A are at most as large as
λ: suppose that λ′ 6= λ is any other eigenvalue of A, and suppose that
~x = (x1, ..., xN) is its associated eigenvector. It fairly obvious from the

triangle inequality that since A has all positive entries, each entry of A~|x| =
A(|x1|, ..., |xN |) is at least as large (in absolute value) as the corresponding
entry of A~x = λ′~x; and so, if we let λ′′ > 0 denote the largest positive real

number such that A~|x| ≥ λ′′~|x|, we must have that

|λ′| ≤ λ′′ ≤ λ.

We now show that all other eigenvalues are strictly smaller in magnitude
than λ: basically, if we had that |λ′| = λ′′ = λ, then if Ai,j denotes the i, j
entry of A, we will have that

|
N

∑

j=1

Ai,jxj | = |λ| · |xi| =
N

∑

j=1

Ai,j|xj |.

And the only way that that could happen is if all the xj ’s “point in the same
direction”, by which I mean that there exists a complex number ω 6= 0 such
that

For all j = 1, 2, ..., N, xj = ωuj, uj ∈ R+.

Since ~u is a positive vector, in order for

A~u = A(ω−1~x) = ω−1λ′~x = λ′~u
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we must have λ′ > 0, and then λ′ either equals λ or is strictly smaller than
it.

Lastly we show that this largest eigenvalue λ has multiplicty 1: there are
two ways that λ can fail to have multiplicity 1. Either there are two or more
linearly independent eigenvectors corresponding to λ; or else there is a single
Jordan Block in the Jordan Canonical Form decomposition of A that has two
or more rows and columns.

Suppose first that A has two linearly independent eigenvectors ~v and
~w ccorresponding to λ, one of which – say it is ~v – is a vector with all
positive entries (which we know exists from the arguments above). Then, it
is clear that any linear combination of ~v and ~w is also an eigenvector; and,
by choosing coefficients δ1 and δ2 appropriately, it is easy to see that we can
create a non-zero, non-negative vector δ1~v + δ2 ~w with the property that one
of its coordinates is 0. But now if we apply A (which has all positive entries)
to this vector, we will produce a vector with all positive entries; hence, that
δ1~v + δ2 ~w could not have been an eigenvector, because that 0 entry should
have remained 0 upon multiplying through by A.

Finally, suppose that there is only one Jordan Block associated with λ,
and that it is 2 × 2, or 3 × 3, etc. Consider the matrix B = λ−1A. The
eigenvalues of this matrix are basically just λ−1 times the eigenvalues of A;
and, that corresponding Jordan Block we aim to eliminate will correspond
to an eigenvalue 1 = λ−1λ for B. The analogue of that Jordan Block for B
will thus be

[

1 1/λ
0 1

]

or





1 1/λ 0
0 1 1/λ
0 0 1



 or · · · ,

Taking high powers of this block will lead to unbounded growth; for example

[

1 1/λ
0 1

]n

=

[

1 n/λ
0 1

]

. (3)

All the other Jordan Blocks that arise for when B is put into Jordan Canoni-
cal Form will correspond to eigenvalues of magnitude smaller than 1; and so,
when we compute high powers of them, they will converge to 0. It follows,
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then, that

lim
n→∞

Bn = M−1











Cn 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











M,

where Cn has the form (3), or corresponding 3 × 3, 4 × 4, ... analogue.
Now, this middle N × N matrix sandwiched between M−1 and M can

be interpreted geometrically as just the transformation Bn with respect to
a basis determined by the matrix M ; and we see that using this new basis
we must have a vector that grows in length the more times we multiply it
by B. Clearly this means that as n → ∞ the largest entry of the matrix
Bn has unbounded growth. We now show that this is a contradiction: since
the largest eigenvalue (in magnitude) of B is 1, and since B is a positive
matrix, we know from the first part of Perron-Frobenius that there exists an
eigenvector ~q with all positive entries such that B~q = ~q. We must also have,
then, that Bn~q = ~q for all n = 1, 2, 3, ... as well. This, however, is impossible,
since if the ith row of Bn is unbounded for infinitely many n we will have
that the ith coordinate of Bn~q should likewise be unbounded (multiply Bn~q
and check this for yourself). This completes the proof of Perron-Frobenius,
since we have now basically eliminated those 2 × 2 or 3 × 3, etc. blocks.
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