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1 Introduction

Depending on the book (or website) you read, a “Poisson Process” can have
many different definitions. For me, the key axioms defining it are as follows:
First, we fix a time interval [0, T ], and a certain parameter λ, and we have
associated to this interval a certain number X of events that can occur,
satisfying:

• Associated to any set of DISJOINT subintervals I1, ..., Ik ⊆ [0, T ], we
have INDEPENDENT random variables XI1, ..., XIk

, where XIj
is the

number of events occurring in the time window Ij .

• Let I := [x, x + h] ⊆ [0, T ]. Then,

lim
h→0

P(XI = 1)

λh
= 1.

That is to say, as h tends to 0, P(XI = 1) grows like λh.

• Using the same interval I as in the above, we have that the probability
that 2 or more events occur in I has size o(h); that is,

lim
h→0

P(XI ≥ 2)

h
= 0.

In the third item we used little-oh notation o(h). Let us remind ourselves
what this means, since we will use it later throughout the course: Given
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positive functions f(x) and g(x), we say that f(x) = O(g(x)) if there exists
a constant c > 0 such that

f(x) < cg(x) (1)

for sufficiently large values of x (say, x > x0, for some x0). And we say that
f(x) = o(g(x)) if for every c > 0 there exists x0(c) such that

f(x) < cg(x). (2)

In other words, f(x) grows slower than any fixed positive constant multiple
of g(x) once x is large enough. We could alternatively say here that f(x) =
o(g(x)) means that

lim
x→∞

f(x)

g(x)
= 0.

In the above usage of little-oh notation (in defining a Poisson process),
note that we take h → 0, not ∞. Well, the idea for how to define little-oh
and big-oh is much the same for this case: We say that f(x) = O(g(x))
as x → 0 if there exists some constant c > 0 such that (1) holds for all x
sufficiently close to 0; and we say that f(x) = o(g(x)) as x → 0 if for every
constant c > 0 there exists x0(c) > 0 such that (2) holds for 0 < x < x0(c).
We also can use the limit definition here; that is, f(x) = o(g(x)) as x → 0 if

lim
x→0

f(x)

g(x)
= 0.

2 Poisson processes lead to Poisson distribu-

tions

It turns out that a random variable X determined via a Poisson process as in
the previous section, has a Poisson distribution; and basically this will follows
from a combination of several ideas we have seen previously, including facts
about the binomial distribution, the union bound, and independence.

For convenience we set T = 1 and h = 1/n, and then later we will let
n → ∞. Define the random variables

X1 := X[0,h), X2 := X[1,2h), ..., Xn := X[(n−1)h,1].
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Then, the total number of events X := X[0,1] satisfies

X = X1 + · · ·+ Xn.

Now, for h small enough these Xi’s are essentially Bernoulli random vari-
ables; and so, X is then essentially a binomial r.v. But we have to deal with
the cases where Xi ≥ 2: Define

E := (X1 ≥ 2) ∪ (X2 ≥ 2) ∪ · · · ∪ (Xn ≥ 2).

Although the Xi’s are independent, we do not have that these events here
are disjoint; however, from the union bound we know that

P(E) ≤ P(X1 ≥ 2) + · · ·+ P(Xn ≥ 2) = no(h) = o(1).

So, the larger we take n, the closer to 0 we will get P(E) to be.
Consider now the event X = j. This can either occur by having the Xi’s

take on the values 0 and 1 only, resulting in
(

n

j

)

ways of summing to j; or
can occur when some of the Xj ≥ 2. As we have already said, the latter case
accounts for essentially 0 probability as n → ∞. So we only need to consider
the case where the Xi’s are 0 or 1; and given that we are in this case, we
must have that

P(Xi = δ) ∼

{

λ/n, if δ = 1;
1 − λ/n, if δ = 0.

It follows, then, that

lim
n→∞

P(X = j) = lim
n→∞

(

n

j

)

(λ/n)j(1 − λ/n)n−j

= (λj/j!) lim
n→∞

n(n − 1) · · · (n − j + 1)

nj
(1 − λ/n)n(1 − λ/n)−j.

Clearly, as n → ∞ we have that the n(n− 1) · · · (n− j + 1)/nj → 1, as does
(1 − λ/n)−j, while the remaining factor (1 − λ/n)n tends to e−λ. So, in the
limit as n → ∞ we have

P(X = j) = λje−λ/j!,

which means that X has a Poisson distribution.
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