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1 Introduction

There are two types of correlation coefficients: the sample correlation coef-
ficient, and the random variable analogue. Here, we will analyze and prove
the properties of the random variable version; the properties for the sample
version will be nearly identical, and follow from similar arguments.

Given a sample (X1,Y)), ..., (Xg, Y%), the sample correlation coefficient is

defined to be
Sxy

\% SXXSYY’

where for a sample (U1, V1), ..., (Ug, Vi) we use the notation

roi=

k

Spy = > (U =D)(Vi-V).

i=1
The random variable analogue is given by

Cov(X,Y)

Y
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where 0% denotes the variance V(Z) of a random variable Z, and where
Cov(X,Y) denotes the covariance, defined to be

Cov(X,Y) == E((X —pux)(Y —py)) = E(XY) — pxpy.

Note: In both cases, if the denominator in the definition of the correlation
coefficient is 0, we will just say that the correlation coefficient is undefined.

We have that p satisfies the following properties
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. —1 < p < 1. r also satisfies this proerty.

. If X and Y are independent, then p = 0; though, the converse is not

true — that is, there exist dependent random variables X and Y for
which p = 0.

. If X and Y are linearly related, in the sense that Y = A\ X + Ay, where

A1 # 0, then p = +1, where the sign here matches the sign of A\;. This
also holds for r.

. Conversely, if p = £1, then with probability 1 we will have that X and

Y are linearly related; that is, there exists A; # 0 and Ay for which
P(Y = My X 4+ X\y) = 1. Also, if r = +1 then Y; = A\ X; + Ao for all 4.

. In these examples above we have intentionally omitted the case A\; = 0,

the reason being that if Y = Ay or X = X}, making X or Y constant
random variables, then the correlation coefficient isn’t even defined,
because ox = 0 or oy = 0 in those cases. The same goes for r.

Proofs of some of the properties of p

2.1 Proof that -1 <p<1

We could prove this using a form of the Cauchy-Schwarz inequality for expec-
tation, but that would be cheating, because, in some sense, C-S is equivalent
to this property about p. What we will in fact do is to use the same proof
technique for establishing C-S to also establish this property about p.

To this end, suppose that t is some real number that we will choose later,

and consider the obvious inequality

E(V +tW)?) > 0, where V=X — pux and W =Y — py.

Expanding out the left-hand-side, and using the linearity of expectation, we
find that

E(V?) + 2E(VW) + *!E(W?) > 0.

Note that the left-hand-side is just a quadratic polynomial in t.

Now, clearly we have that

E(V?) = o%, E(W?) =0}, and E(VIW) = Cov(X,Y);
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and so, our polynomial inequality becomes
oyt +2Cov(X, Yt + 0% > 0.

From this inequality we find that the only way the left-hand-side could be 0
is if the polynomial has a double-root (i.e. it touches the z-axis in a single
point), which could only occur if the discriminant is 0. So, the discriminant
must always be negative or 0, which means that

4Cov(X,Y)? — 4030y < 0.

In other words,
Cov(X,Y)?

2 2
Ox0y

< I

provided, of course, that the denominator does not vanish.

2.2 Proof that p = +1 implies X and Y are linearly
related

From the proof in the previous subsection, we observe that the only way
p = %1 is if the discriminant of that quadratic polynomial is 0, which would
mean that the quadratic polynomial vanishes for some value ¢, for the variable
t. This would mean, however, that

E((Y — py + 10X —toux)?) = E((V +1,W)?) = 0.
The only way this could occur is if Y — puy +t0 X —toux = 0 with probability
1, which shows that X and Y are linearly related with probability 1.

2.3 Proof that if X and Y are linearly related, then
p==x1

Now suppose that
Y = X+ X

Then, we have that uy = Ajpux + A2; and so,

Cov(X,Y) = E((X = px)(MX = Apx)) = ME(X — px)?) = Mok



Also, by properties of variance,
oy = VIMX +X) = V(MX) = Aok

From this it follows that

Cov(X,Y) A1
p = = )
0x0y |>\1|

which is +1, with the sign determined by the sign of ;.

2.4 Independence implies 0 correlation coefficient, but
not the converse

If X and Y are independent, then
Cov(X,Y) = E((X —px)(Y —py)) = E(X —pux)E(Y —py) = 0-0 = 0;

so of course the correlation coefficient is also 0.

The converse, however, is not true. To see this, we begin by defining
independent random variables A and B that take on the values 1 with
equal probability (i.e. probability 1/2). Then, we define

X = A+B,andY = A—B.
We have that
Cov(X,Y) = E(XY) —uxpuy = E(A*~B*) -0 = 0,

since A2 = B2 = 1. Yet, X and Y are dependent, since, for example, if
X =2, then Y is forced to equal 0.



