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1 Introduction

There are two types of correlation coefficients: the sample correlation coef-
ficient, and the random variable analogue. Here, we will analyze and prove
the properties of the random variable version; the properties for the sample
version will be nearly identical, and follow from similar arguments.

Given a sample (X1, Y1), ..., (Xk, Yk), the sample correlation coefficient is
defined to be

r :=
SXY√

SXXSY Y

,

where for a sample (U1, V1), ..., (Uk, Vk) we use the notation

SUV =
k∑

i=1

(Ui − U)(Vi − V ).

The random variable analogue is given by

ρ :=
Cov(X, Y )

σXσY

,

where σ2

Z
denotes the variance V (Z) of a random variable Z, and where

Cov(X, Y ) denotes the covariance, defined to be

Cov(X, Y ) := E((X − µX)(Y − µY )) = E(XY ) − µXµY .

Note: In both cases, if the denominator in the definition of the correlation
coefficient is 0, we will just say that the correlation coefficient is undefined.

We have that ρ satisfies the following properties
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1. −1 ≤ ρ ≤ 1. r also satisfies this proerty.

2. If X and Y are independent, then ρ = 0; though, the converse is not
true – that is, there exist dependent random variables X and Y for
which ρ = 0.

3. If X and Y are linearly related, in the sense that Y = λ1X +λ2, where
λ1 6= 0, then ρ = ±1, where the sign here matches the sign of λ1. This
also holds for r.

4. Conversely, if ρ = ±1, then with probability 1 we will have that X and
Y are linearly related; that is, there exists λ1 6= 0 and λ2 for which
P(Y = λ1X + λ2) = 1. Also, if r = ±1 then Yi = λ1Xi + λ2 for all i.

5. In these examples above we have intentionally omitted the case λ1 = 0,
the reason being that if Y = λ2 or X = λ′

2
, making X or Y constant

random variables, then the correlation coefficient isn’t even defined,
because σX = 0 or σY = 0 in those cases. The same goes for r.

2 Proofs of some of the properties of ρ

2.1 Proof that −1 ≤ ρ ≤ 1

We could prove this using a form of the Cauchy-Schwarz inequality for expec-
tation, but that would be cheating, because, in some sense, C-S is equivalent

to this property about ρ. What we will in fact do is to use the same proof
technique for establishing C-S to also establish this property about ρ.

To this end, suppose that t is some real number that we will choose later,
and consider the obvious inequality

E((V + tW )2) ≥ 0, where V = X − µX and W = Y − µY .

Expanding out the left-hand-side, and using the linearity of expectation, we
find that

E(V 2) + 2tE(V W ) + t2E(W 2) ≥ 0.

Note that the left-hand-side is just a quadratic polynomial in t.
Now, clearly we have that

E(V 2) = σ2

X
, E(W 2) = σ2

Y
, and E(V W ) = Cov(X, Y );
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and so, our polynomial inequality becomes

σ2

Y
t2 + 2Cov(X, Y )t + σ2

X
≥ 0.

From this inequality we find that the only way the left-hand-side could be 0
is if the polynomial has a double-root (i.e. it touches the x-axis in a single
point), which could only occur if the discriminant is 0. So, the discriminant
must always be negative or 0, which means that

4Cov(X, Y )2 − 4σ2

X
σ2

Y
≤ 0.

In other words,
Cov(X, Y )2

σ2

X
σ2

Y

≤ 1;

provided, of course, that the denominator does not vanish.

2.2 Proof that ρ = ±1 implies X and Y are linearly

related

From the proof in the previous subsection, we observe that the only way
ρ = ±1 is if the discriminant of that quadratic polynomial is 0, which would
mean that the quadratic polynomial vanishes for some value t0 for the variable
t. This would mean, however, that

E((Y − µY + t0X − t0µX)2) = E((V + t0W )2) = 0.

The only way this could occur is if Y −µY + t0X − t0µX = 0 with probability
1, which shows that X and Y are linearly related with probability 1.

2.3 Proof that if X and Y are linearly related, then

ρ = ±1

Now suppose that
Y = λ1X + λ2.

Then, we have that µY = λ1µX + λ2; and so,

Cov(X, Y ) = E((X − µX)(λ1X − λ1µX)) = λ1E((X − µX)2) = λ1σ
2

X
.
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Also, by properties of variance,

σ2

Y
= V (λ1X + λ2) = V (λ1X) = λ2

1
σ2

X
.

From this it follows that

ρ =
Cov(X, Y )

σXσY

=
λ1

|λ1|
,

which is ±1, with the sign determined by the sign of λ1.

2.4 Independence implies 0 correlation coefficient, but

not the converse

If X and Y are independent, then

Cov(X, Y ) = E((X −µX)(Y −µY )) = E(X−µX)E(Y −µY ) = 0 ·0 = 0;

so of course the correlation coefficient is also 0.
The converse, however, is not true. To see this, we begin by defining

independent random variables A and B that take on the values ±1 with
equal probability (i.e. probability 1/2). Then, we define

X := A + B, and Y := A − B.

We have that

Cov(X, Y ) = E(XY ) − µXµY = E(A2 − B2) − 0 = 0,

since A2 = B2 = 1. Yet, X and Y are dependent, since, for example, if
X = 2, then Y is forced to equal 0.
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