A few solutions to exam 1, Math 3770, Fall 2008

September 26, 2008

Here I will give solutions to problems 2,3, and 4 ONLY - problems 1 and 5 are basic and you can figure them out on your own.
2. There are many ways to solve this one. Here is one of the simplest: There are basically two kinds of marbles - green and not-green. There are 6 green and 18 not-green. The probability you draw at least three marbles is the probability that your first two draws are not-green. So,

$$
\begin{aligned}
& P((\text { first not }- \text { green }) \cap(\text { second not }- \text { green })) \\
& \quad=P((\text { first not }- \text { green })) P((\text { second not }- \text { green }) \mid(\text { first not }- \text { green })) \\
& \quad=\frac{18}{24} \cdot \frac{17}{23} \\
& \quad=\frac{51}{92} .
\end{aligned}
$$

Another way to solve it is to sum up the possibilities for the first two draws: RB, BR, RR, BB.
3. This problem is easier than it looks. By combining "inclusion-exclusion", together with independence (i.e. $P(A \cap B)=P(A) P(B)$), and some simple algebra, you get:

$$
\begin{aligned}
P(A \cup B)=P(A)+P(B)-P(A \cap B) & =P(A)+P(B)-P(A) P(B) \\
& =1-(1-P(A))(1-P(B)) .
\end{aligned}
$$

Here is another approach: Since

$$
A \cup B=\overline{\bar{A} \cap \bar{B}}
$$

we find

$$
P(A \cup B)=1-P(\bar{A} \cap \bar{B})=1-P(\bar{A}) P(\bar{B})=1-(1-P(A))(1-P(B)) .
$$

Well, there is a subtlety to this approach: Just because we know $P(A \cap B)=$ $P(A) P(B)$, how do we deduce $P(\bar{A} \cap \bar{B})=P(\bar{A}) P(\bar{B})$? This is easy to prove... I will leave it to you to discover how to show it.
4. The given data in the problem is equivalent to the following:

$$
\begin{aligned}
P(\text { Black } \mid \text { Local }) & =0.3 \\
P(\text { White } \mid \text { Local }) & =0.2 \\
P(\text { Green } \mid \text { Local }) & =0.5 \text { (follows from the two equalities above) } \\
P(\text { Green } \mid \text { College }) & =0.1 \\
P(\text { Local }) & =0.3 \\
P(\text { College }) & =0.7 \text { (deduction from previous equality). }
\end{aligned}
$$

Bayes's theorem then gives

$$
\begin{aligned}
P(\text { Local } \mid \text { Green }) & =\frac{P(\text { Green } \mid \text { Local }) P(\text { Local })}{P(\text { Green } \mid \text { Local }) P(\text { Local })+P(\text { Green } \mid \text { College }) P(\text { College })} \\
& =\frac{0.5 \cdot 0.3}{0.5 \cdot 0.3+0.1 \cdot 0.7} \\
& =\frac{15}{22} .
\end{aligned}
$$

