
1 Introductory Comments

First, I would like to point out that I got this material from two sources: The
first was a page from Paul Graham’s website at www.paulgraham.com/ffb.html,
and the second was a paper by I. Androutsopoulos, J. Koutsias, K. V.
Chandrinos, and C. D. Spyropoulos, titled An Experimental Comparison

of Naive Bayesian and Keyword-Based Anti-Spam Filtering with Personal

E-mail Messages, which appeared in the Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research and Development in In-
formation Retrieval (pages 160-167). The Graham paper is interesting, but
is written more for those with almost no mathematical background, and it
doesn’t explain the math behind the algorithm; and, even though Graham’s
paper gives a link to a page describing the math, that linked page also does
not do an adequeate job, since it does not place the result proved and used
in its proper Bayesian context. Here in these notes I will give a more for-
mal treatment, and will be explicit about the “conditional independence”
assumptions that one makes.

2 Bayesian Probability

In this section I will prove a few basic results that we will use. Some of these
results are proved in your book, but I will prove them here again anyway, to
make these notes self-contained.

First, we have Bayes’s Theorem:

Theorem (Bayes’s Theorem). Suppose that S is a sample space, and Σ
is a σ-algebra on S having probability measure P . Further, suppose that we
have a partition of S into (disjoint) events C1, C2, ..., Ck; that is,

S =

k
⋃

i=1

Ci, and, for i 6= j, Ci ∩ Cj = ∅.

Then, for any i = 1, 2, ..., k, we have

P (Ci|A) =
P (A|Ci)P (Ci)

∑k

j=1 P (A|Cj)P (Cj)
.
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Proof. The proof is really obvious, once you know what everything means.
First, we note that A can be partitioned as follows:

A =
k

⋃

j=1

A ∩ Cj,

where we notice that the sets A ∩ Cj are all disjoint, since the sets Cj are
disjoint. Thus, we have

P (A) =

k
∑

j=1

P (A ∩ Cj) =

k
∑

j=1

P (A|Cj)P (Cj). (1)

The second equality here just follows from the definition of conditional prob-
ability

P (C|D) =
P (C ∩ D)

P (D)
.

Now, then, via obvious manipulations we get

P (Ci|A) =
P (A|Ci)P (Ci)

P (A)
,

and then replacing the P (A) on the denominator with the right-hand-side in
(1) the theorem now follows. �

The theorem we will actually use is what I will call the “Spam Theorem”.
The setup is as follows: Suppose we have two classes of objects, spam and
Legitimate email. We will use “Spam” to denote the spam messages, and
“Legit” to denote the legitimate ones. We also suppose we have a series of
k attributes that a Spam or Legit message can have. Our sample space for
the probability theory will be as follows: S will be all ordered (k + 1)-tuples
of the form

(Spam, t1, ..., tk) or (Legit, t1, ..., tk),

where each ti is 1 or 0; ti = 0 means the message does not have attribute i,
and ti = 1 means it does have attribute i. In total there are 2k+1 elements in
S.

These elements of S you can think of as the space of all possible mes-
sage attributes. For example, if k = 3, a typical element of S looks like
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(Spam, 1, 0, 1), which would mean that you have a Spam message having
attributes 1 and 3, but not attribute 2.

These k attributes you can think of as corresponding to whether or not
the message contains a particular word. So, for example, attribute 1 might be
“The message contains the word SAVE”, attribute 2 might be “The message
contains the word MONEY”, and attribute 3 might be “The message contains
the word NOW”. Thus, a message having attribute vector (Spam, 1, 0, 1)
would be a spam email containing the words SAVE and NOW, but not the
word MONEY.

We assume that we have some probability measure P on Σ = 2S. Now,
we let “Spam” denote the subset of S consisting of all vectors with “Spam”
for the first entry; and we let “Legit” denote the vectors in S that begin
with “Legit”. We let Wi denote the subset of S consisting of all vectors with
ti = 1; that is, you can think of a message as having an attribute vector lying
inside Wi if it is a message that contains the ith word somewhere in its text.

We further make the following, crucial conditional independence assump-
tions:

Conditional Independence Assumptions. Suppose that Wi1 , ..., Wiℓ

are distinct words chosen from among W1, ..., Wk. Then, we assume that

P (Wi1 ∩ Wi2 ∩ · · · ∩ Wiℓ | Spam) =

ℓ
∏

j=1

P (Wij | Spam); and

P (Wi1 ∩ Wi2 ∩ · · · ∩ Wiℓ | Legit) =

ℓ
∏

j=1

P (Wij | Legit).

Comments: The first assumption here roughly says that for any given piece
of spam, the probability that that message contains any given word on our list
is “independent” of the probability that it contains any other combination of
the other words on our list. This is maybe not a valid assumption, since for
instance, if a spam contains the word “SAVE”, it very likely contains the word
“MONEY”; so, these probabilities are not independent, or “uncorrelated”.
Nonetheless, we will assume that these conditions hold in order to make our
model simple. The second assumption has a similar interpretation.

Now we come to our theorem
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Spam Theorem. Suppose that S, Σ, and P as above, and let pi =
P (Spam|Wi). Further, suppose that the conditional independence assump-
tion holds. Then, for any subset Wi1 , ..., Wiℓ of W1, ..., Wk we have that

P (Spam | Wi1 ∩ · · · ∩ Wiℓ) =
pi1 · · · piℓ

pi1 · · · piℓ +
(

x
1−x

)ℓ−1
(1 − pi1) · · · (1 − piℓ)

,

where x = P (Spam).

This theorem is telling us that if we are given a document containing the
words Wi1 , ..., Wiℓ , then we can calculate the probability that it is a spam
message by plugging in the respective probabilities into the formula. How do
we determine the probabilities pi? That will be described in the next section.
For now we will just assume we know what they are.

Let us now see how to prove the theorem.

Proof. We apply Bayes’s Theorem with the disjoint events C1 = Spam,
and C2 = Legit = C1 (which partition S), and with A = Wi1 ∩ · · · ∩ Wiℓ .
With these choices of parameters we get that the numerator in the formula
for P (C1|A) in Bayes’s Theorem has the value

P (A|C1)P (C1) = P (C1)
ℓ

∏

j=1

P (Wij |C1) = P (C1)
ℓ

∏

j=1

P (C1|Wij )
P (Wij)

P (C1)

=
1

xℓ−1

ℓ
∏

j=1

pijP (Wij).

To get this expansion we have used our conditional independence assumption,
together with the basic fact that P (F |G) = P (G|F )P (F )/P (G). Note here
that we also made the substitution P (C1) = P (Spam) = x.

To get the denominator in Bayes’s formula for P (C1|A), we have to find
P (A|C1)P (C1) + P (A|C2)P (C2). We have already found the first term here;
so, we just need to find the second term, which is

P (A|C2)P (C2) = P (C2)

ℓ
∏

j=1

P (Wij |C2) = P (C2)

ℓ
∏

j=1

P (C2|Wij )
P (Wij)

P (C2)

=
1

(1 − x)ℓ−1

ℓ
∏

j=1

P (Wij)(1 − pij ).
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So, we have

P (C1|A) =
1

xℓ−1

∏ℓ

j=1 pijP (Wij)

1
xℓ−1

∏ℓ

j=1 pijP (Wij) + 1
(1−x)ℓ−1

∏ℓ

j=1(1 − pij )P (Wij)

=
pi1 · · · piℓ

pi1 · · · piℓ +
(

x
1−x

)ℓ−1
(1 − pi1) · · · (1 − piℓ)

.

The theorem now follows. �

3 Applying the Spam Theorem to do the Fil-

tering

The idea is to start with, say 1000 messages, with 500 of them spam, and 500
legitimate. Then, you find the “best” 20 words which appear in a significant
percentage of the spam and legit messages. By “best” I mean here that the
word is biased towards being in either a spam or legit message. For example,
if I were told that I am about to receive a message containing the word “sell”,
and if I know that I typically get as many spams as legit emails, then there
is a better than 50 percent chance that the message is spam. On the other
hand, if I was told the message contains the word “the”, then that would
tell me little about whether the message is spam or legit; that is, I would
only know the message is spam with 50 percent chance. So, the word “the”
would not go on my list of “best” words, but the word “sell” just might. The
correct balance between how often a word appears in emails, and how biased
it is to being spam or legit, in determining whether the word is one of the
“best words”, is left up to the user.

After we have our list of words, we then compute the numbers pi =
P (Spam|Wi) as follows: Given a word Wi, let N be the total number of
my 500 spam emails containing Wi, and let M be the total number of my
500 legit emails containing Wi. Then, we let P (Wi|Spam) = N/500 and
P (Wi|Legit) = M/500. The quantity P (Spam) is the parameter x in the
spam theorem, which is left up to the user to supply. Finally, by Bayes’s
Theorem we have

pi =
P (Wi|Spam)P (Spam)

P (Wi|Spam)P (Spam) + P (Wi|Legit)P (Legit)
=

xN

xN + M(1 − x)
.
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Now suppose you are given some message. It is not too difficult to have
a computer program read through the message to determine which of our 20
best words appear in the message. After this is done, suppose that the words
appearing in the message, which are among our 20 best, are Wi1 , ..., Wiℓ .
Then, the computer can calculate the probability that that message is a
spam using the spam theorem. If the chance that the message is spam is
sufficiently high, then you can have the computer reject the message or to
put it into some kind of “holding folder”, which you can look through from
time to time, just in case a legit message was misclassified as spam.
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