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1 Introduction

Know the material in your book about chi-squared random variables, in
addition to the material presented below.

1.1 Basic properties of chi-squared random variable

A chi-squared random variable χ2
n with n degrees of freedom is a continuous

random variable taking on values in [0,∞). It has the probability density
function

f(x) =

{

xn/2−1e−x/2

2n/2Γ(n/2)
, if x ≥ 0;

0, if x < 0.

Here, Γ(x) is the function

Γ(x) =
∫

∞

0
e−ttx−1dt.

Note that this integral converges for all x > 0, because the e−t decays so
quickly to 0 as t → ∞ that it more than compensates for the facts that (a)
tx−1 tends to infinity with t when x > 1; and (b), for 0 < x < 1, tx−1 is
near infinity when t is near 0. Furthermore, this “gamma function” enjoys a
number of useful properties, among them:

• For x > 0, xΓ(x) = Γ(x + 1). This is easily proved upon using some
integration by parts.

• Γ(1) = 1.
• Γ(1/2) =

√
π. It turns out that this is a consequence of the fact that

∫

∞

0 e−t2/2dt =
√

2π, together with a change of variable (i.e. “u substitution”).
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• And, combining together the first two above, one sees that for an integer
x ≥ 1, Γ(x) = (x − 1)!, where 0! = 1 by convention.

The mean and variance of χ2
n are given by

E(χ2
n) = n, and V(χ2

n) = 2n.

1.2 Additional properties

It turns out that χ2
n has the same distribution as

X2
1 + X2

2 + · · · + X2
n,

where each of the Xi are independent, standard normal random varibles. In
other words,

P(χ2
n ≤ a) = P(X2

1 + · · ·+ X2
n ≤ a).

This will be useful in developing the “chi-squared test statistic”: One
can think of these X2

1 , ..., X
2
n as the “squares of errors in n independent

measurements”. So, if one develops a model to describe some data, and one
decides that the “errors” in each measurement are approximately N(0, 1)
in distribution, then one can get some idea of how well ones estimate for
certain model parameters match the measured (noisy) parameters. And, one
would like to know when the discrepancy between these values (model and
measured) makes the model appear to be improbable, so that one can reject
it.

1.2.1 An important formula

Using a tedious integration-by-parts computation, one can further prove the
following beautiful formula, which holds in the case for n even: Let Y be a
Poisson random variable with parameter λ = a/2. Then,

P(χ2
n ≥ a) = P(Y ≤ n/2 − 1).

So, in the case n = 2 we have

P(χ2
n ≥ a) = P(Y = 0) = e−a/2.

There is similarly a formula for the case n odd, but it is more complicated.
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2 Two applications

2.1 Goodness of fit of a model

The following application is not the usual “chi-squared test statistic”, but
gives some indication of how chi-squared random variables may be used.
Later in the course we will discuss the chi-squared test statistic in depth, so
be patient.

Suppose that p(t) is the measured position of an object, where we will
only work with the times t = 1, 2, ..., 6. We wish to test the hypothesis that
“the actual position of the object at time t is t.” Assuming that this is the
case, we further make the assumption that the discrepancy between observed
and actual position is

p(t) − t = N(0, 1),

for each of the times t = 1, 2, ..., 6. Furthermore, we assume that all the
p(i) − i are independent of each other (i.e. the errors between actual and
observed positions at different times are independent of each other).

Before we delve deeper into this application, we note that it is not a bad
assumption that this discrepancy has a normal distribution, since often errors
in measurement are the result of many little errors acting cumulatively on
the observed value (such as millions of air particles deflecting slightly a laser
beam used to find the position of an object).

We now want to test the hypothesis that “the actual position at time t is
t”, so we perform an experiment and obtain the following observed position
values:

p∗(1) = 0.5, p∗(2) = 1.5, p∗(3) = 3.0, p∗(4) = 3.0, p∗(5) = 5.5, p∗(6) = 6.0.

The reason for using p∗(t) here in place of p(t) is that we think of p(t) as a
random variable, while p∗(t) are observed instances of the random variable
(alsed called “exposures of p(t)”). This notation is fairly common.

Now we compute

E = (p∗(1) − 1)2 + (p∗(2) − 2)2 + · · ·+ (p∗(5) − 5)2 = 1.75;

that is, E is the sum of the square errors between the predicted location of
the object and the observed location of the object for times t = 1, 2, ..., 6.
Since we have assumed that p(t) − t is N(0, 1) it follows that

(p(1) − 1)2 + · · ·+ (p(6) − 6)2 is chi − squared with 6 degrees of freedom.
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So, to see whether the hypothesis that “the actual position at time t is t” is
a good one, we compute, with the aid of the formula in section 1.2.1,

P (χ2 ≥ 1.75) = e−1.75/2
2
∑

j=0

(1.75/2)j

j!

= 0.41686202(1 + 0.875 + 0.3828125)

≈ 0.94.

Thus, there is about a 94% chance that one will get a sum-of-squares error
that is at least as big as our observed error E = 1.75. In other words, the
error we observed was actually quite small, so we don’t reject the hypothesis
“the actual position of the object at time t is t”.

2.2 Population sampling: the chi-squared test statistic

Another type of problem where a chi-squared distribution enters into hy-
pothesis testing is population sampling; indeed, this problem is one where
the chi-squared test statistic is absolutely critical in checking claims about
a population makeup. Here is the setup: Suppose you have a population
that is divided into k different categories. Further, you hypothesize that the
fraction of individuals in the jth category is pj . Note that p1 + · · ·+ pk = 1.
You now wish to test this hypothesis by picking a large number of individu-
als, and checking to see which category they fall into. If you let Xj denote
the number of people in category j, then note that X1 + · · · + Xk is the
total number of people in your sample. It is clear then that the Xi’s are not
independent, because if one knows any k − 1 of the Xi’s, then the remaining
Xi is determined.

Now fix an integer j = 1, 2, ..., k. We would like to know the distribution
of Xj under the hypothesis that pj fraction of the population is in the jth
class. This distribution turns out the be binomial, as can be seen as follows:
Suppose that the sample size is N . Then, we define the Bernoulli random
variables B1, ..., BN such that

Bi =

{

1, if person i is in jth category
0, if person i is not in jth category.

Furthermore, P (Bi = 1) = pj. Clearly,

Xj = B1 + · · ·+ BN .
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So, the mean of Xj is pjN and its variance is

V (Xj) = V

(

N
∑

i=1

Bi

)

=
N
∑

i=1

V (Bi) = NV (B1) = Npj(1 − pj).

We have used here the fact that the Bi’s are independent to write this vari-
ance of a sum of Bi’s as a sum of variances of the Bi’s.

Next, we normalize Xj by letting

Yj =
Xj − pjN
√

Npj(1 − pj)
.

Note that Yj has mean 0 and variance 1. Furthermore, from the Central Limit
Theorem, as N tends to infinity, Yj approaches N(0, 1) in the following sense:
For every real number c, we have that

lim
N→∞

P (Yj ≤ c) = P (N(0, 1) ≤ c).

Now consider the following sum of square errors:

E =
k
∑

j=1

Y 2
j . (1)

This function will be “large” precisely when several of the Yj’s stray “too far”
from 0, and this happens precisely when several of the Xj ’s stray “too far”
from their conjectured mean pjN . Also, if pj is the correct percent of the
population belonging to class j for all j = 1, 2, ..., k, then we expect that Xj

should be “close” to pjN for all j = 1, 2, ..., k, and thus Yj should be “close”
to 0 for all j = 1, 2, ..., k; and so, we should have that E is “small”. In order
to be able to check our hypothesis that “pj fraction of the population belongs
to class j, for all j = 1, 2, ..., k”, we need to know the probability distribution
of E, and the following result gives us this needed information:

Theorem. For large values of N , the random variable E given in (1) has
approximately a chi-squared distribution with k − 1 degrees of freedom.

A natural question here is: Why only k − 1 degrees of freedom, why not
k? The reason is that, as was stated earlier, the Xj’s, and therefore the Yj’s,
are not independent: We have that any Xj is completely determined by the
other k − 1 values Xi’s since X1 + · · ·+ Xk = N .
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We will not prove the above theorem, as its proof is long and technical,
but we will apply it here to a simple example:

Example: Suppose you read in a newspaper that likely voters in Florida
break down according to the following distribution: 40% will vote Republi-
can, 40% will vote Democrat, 10% will vote Libertarian, 5% will vote Green,
and 5% will vote “other”.

You decide to test this by doing a poll of your own. Suppose that you
ask 10,000 likely Florida voters which group they will vote for, and suppose
you receive the following data:

4,200 will vote Republican;
3,900 will vote Democrat;
1,000 will vote Libertarian;
700 will vote Green; and,
200 will vote “other”.

So, we let

X∗

1 = 4200, X∗

2 = 3900, X∗

3 = 1000, and X∗

4 = 700, and X∗

5 = 200.

The ∗ indicates that the X∗

j is an observed value, rather than a random
variable.

Then, we compute

Y ∗

1 =
4200 − 4000

100
√

0.24
=

2√
0.24

≈ 4.0825

Y ∗

2 =
3900 − 4000

100
√

0.24
= −

1√
0.24

≈ −2.0412

Y ∗

3 = 0

Y ∗

4 =
700 − 500

100(0.2179)
=

2

0.2179
≈ 9.177

Y ∗

5 =
200 − 500

100(0.2179)
= −

3

0.2179
≈ −13.768.

So, the sum-of-square errors is

E∗ = (Y ∗

1 )2 + · · ·+ (Y ∗

5 )2 ≈ 294.608.

Now, to test whether our conjectured probabilities for the types of likely
voters is correct, we select a parameter α, which is often taken to be 0.05.
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Then, we ask ourselves: What is the probability that a chi-squared random
variable having k − 1 = 4 degrees of freedom has value ≥ 294.608; that is,

P (χ2
4 ≥ 294.608) = ?.

If this value of less than α = 0.05, then we reject the hypothesis on the
makeup of likely Florida voters; otherwise, we do not reject the hypothesis,
which is not the same as saying that we accept it.

After doing a table lookup, it turns out that

P (χ2
4 ≤ 294.608) = 1.000..., is very close to 1;

and so, the probability we seek is much smaller than α. So, we reject our
hypothesis on the makeup of likely Florida voters.
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