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1 Introduction

Given a random variable X, let f(x) be its pdf. The quantity (in the con-
tinuous case – the discrete case is defined analogously)

E(Xk) =

∫

∞

−∞

xkf(x)dx

is called the kth moment of X.
The “moment generating function” gives us a nice way of collecting to-

gether all the moments of a random varaible X into a single power series (i.e.
Maclaurin series) in the variable t. It is defined to be

MX(t) := E(eXt) = E

(

∞
∑

k=0

Xkt

k!

)

.

Thinking here of the t as a constant, at least from the perspective of taking
expectations, we use the linearity of expectation to conclude that

E(eXt) =

∞
∑

k=0

E(Xk)tk

k!

So, the coefficients of the powers of t give us moments divided by k!.
It is fairly easy to see that if we take the kth derivative of the moment

generating function, and set t = 0, the result will be the kth moment. In
symbols, this is

(

d

dt

)k

MX(t)

∣

∣

∣

∣

∣

t=0

= kth moment of X.
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Caution!: It may be that the moment generating function does not exist,
because some of the moments may be infinite (or may not have a definite
value, due to integrability issues). Also, even if the moments are all finite
and have definite values, the generating function may not converge for any
value of t other than 0. All that said, these convergence issues and infinities
rarely come up in the sort of problems we will consider in this course (and
rarely come up in real-world problems).

Take home message. I expect you to know everything from this section.

2 Some examples

Example 1. We saw in class that if X is a Bernoulli random variable with
parameter p, then

MX(t) = E(eXt) = e0·t(1 − p) + e1·tp = pet + 1 − p.

Also, because Xk = X, it is clear that the kth moment of X, k ≥ 1, is the
same as the first moment, which is just p; indeed, taking the kth derivative
of MX(t) and setting t = 0 we find that

kth moment = pet
∣

∣

t=0
= p.

Example 2. Let us compute the moment generating function for a normal
random variable having variance σ2 and mean µ = 0. Note that the pdf for
such a random variable is just

f(x) =
1

√
2πσ

e−x2/2σ2

.

So, we have that

MX(t) = E(eXt) =

∫

∞

−∞

ext 1
√

2πσ
e−x2/2σ2

dx

=

∫

∞

−∞

e−(1/2σ2)(x2
−2σ2tx)

√
2πσ

dx.
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Now we complete x2−2σ2tx to a square by adding to it (and then subtracting)
σ4t2, and so

MX(t) =
1

√
2πσ

∫

∞

−∞

e−(1/2σ2)((x−σ2t)2−σ4t2)dx

= eσ2t2/2

(
∫

∞

−∞

1
√

2πσ
e−(x−σ2t)2/2σ2

dx

)

.

Now we recognize that the last integral here equals 1, since it is the integral
of the pdf for the normal random variable N(σ2t, σ2) over the full interval
(−∞,∞). So,

MX(t) = eσ2t2/2.

Just to make sure you understand how moment generating functions work,
try the following two example problems.

Problem 1. Compute the moment generating function for the random vari-
able X having uniform distribution on the interval [0, 1].

Problem 2. Based on your answer in problem 1, compute the fourth moment
of X – i.e. E(X4).

Take home message. I expect you to know how to compute the moment
generating function of some basic random variables, like those with Bernoulli
and uniform distribution. I do not expect you to know how to derive the
MGF for normal random variables for the purposes solving a problem on an
exam. Though, I may give you the MGF of some random variable on an
exam, and then ask you to compute moments of that r.v.

3 From moment generating functions to dis-

tributions

A key and profoundly useful fact about moment generating functions is the
following.

Key Fact. Suppose that X and Y are two random variables having moment
generating functions MX(t) and MY (t) that exist for all t in some interval
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[−δ, δ]. Then, if

MX(t) = MY (t), for all t ∈ [−δ, δ],

we must have that X and Y have the same cumulative distribution; that is,

P (X ≤ a) = P (Y ≤ a), for all a ∈ R.

This beautiful fact can be exploited to pin down the distribution of the
sum of various types of independent random variables, due to the fact that
the exponential in the definition of MGFs allows us to transform sums of
random variables into products of expectations. More specifically, we have
the following immensely useful “reproductive property” of the moment gen-
erating function.

Claim. Suppose that X1, ..., Xk are independent random variables. Then,

MX1+···+Xk
(t) = E(e(X1+···+Xk)t)

= E(eX1teX2t · · · eXkt)

= E(eX1t) · · ·E(eXkt)

= MX1
(t) · · ·MXk

(t).

We note that we used the fact that the Xi’s are independent when we rewrote
the expectation of a product of exponentials as a product of expectations.
This is just the familiar fact that if Z1, ..., Zk are independent, then

E(Z1 · · ·Zk) = E(Z1) · · ·E(Zk).

Take home message. Know everything from this section.

4 An application to sums of independent nor-

mal random variables

Using the moment generating function we computed for N(0, σ2) in the pre-
vious section, we now use it to show the following.
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Claim. Suppose that X1, ..., Xk are independent normal random variables
with means µ1, ..., µk and variances σ2

1, ..., σ
2
k, respectively. Then,

Y = X1 + · · · + Xk

is normal with mean µ1 + · · ·+ µk and variance σ2
1 + · · ·+ σ2

k.

Basically, to show that this is the case, we just compute the moment
generating function for Y , and show that it is the same as that of

N(µ1 + · · ·+ µk, σ
2
1 + · · · + σ2

k).

We will do this only for the case µ1 = · · · = µk = 0 (the more general case is
really no more difficult!).

Combining together various facts from previous sections, we find that

MY (t) = MX1
(t) · · ·MXk

(t) = eσ2

1
t2/2 · · · eσ2

k
t2/2

= e(σ2

1
+···+σ2

k
)t2/2,

which is clearly the moment generating function for

N(0, σ2
1 + · · ·+ σ2

k),

so we are done (note that the moment generating function exists for all t,
not merely for t ∈ [−δ, δ]).

Problem 3. See if you can figure out how to handle the more general case
of where the Xi’s have means µi that may or may not equal 0.

Take home message. Know everything from this section.

5


