Math 4107, exam 1

September 22, 2009

Each question is worth 20 points.

1. Define the following terms.
a. Normal subgroup.
b. Homomorphism.
c. Innerautomorphism.
2. List all the elements of order 2 from the group S_{4}.
3. Find integers k and ℓ, satisfying

$$
55 k+21 \ell=1,|k| \leq 20,|\ell| \leq 54
$$

Don't just write down the answer. Work it using the Euclidean algorithm (e.g. Knuth's algorithm), so that I know you know some good mathematics.
4. Consider the set of all 2×2 matrices of the form

$$
\left[\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right]
$$

Prove that the set of all such matrices forms a group under matrix multiplication.
5.
a. First, show that D_{4} has a normal subgroup of order 2 (in fact, it is a quite special type of normal subgroup...). Note that D_{n} for all n even has such a subgroup, and for n odd there is no such subgroup.
b. Show that the group of automorphisms of the group D_{4}, denoted by $\operatorname{Aut}\left(D_{4}\right)$, contains at least 4 elements.

