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11. I know several ways to prove this. Here is one way:

Partition G into a union of disjoint sets of the type {a,a'}. In the case
a = e, the identity element, we will have that a~! = e; and so, the set {a,a™'}
will consist only of {e} in that case. In general, such a set will contain only
one element if ¢ = a7'; that is, a® = e. Now, if {e} is the only set where
{a,a™'} contains only one element, then we would have that

G| = e} + Har, a7} + -+ [{ag, a5} = 1+ 2k,

which would contradict the fact that |G| is even. So, there must be at least
one other set besides {e} having only one element; and therefore, there is an
element a # e satisfying a? = e.
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6.

a. We have that G = {e,a,ad?, ...,a’}, and H = {e,a? a*,a% a®}. The
cosets of H are H and aH; and note,

HUaH = {e,d* a* d® a®}U{a,d® d’ d",a°} = G.

b. If H = {e,a®}, then the cosets of H are H,aH,a*H,a>H and a*H.

c. (Recall Herstein’s funny notation A(S) for the symmetric group on the
set S.) Here, H is the set of all permutations that fix the element x;. There
are two such permutations:

1 To I3 1 To I3
o = e = , and oy = .
Tr1 T X3 Ty Tz X2

1



Since A(S) has 6 = 3! elements, we must have that there are three cosets of

H. These cosets are
H, aH, and fH,

Ty T2 I3

a = ,
To X1 I3

3 = Typ T2 T3
xr3 T2 I1 .

15. To prove that Z < G, first suppose @ € Z. Then, a~! € Z, because
if ag = ga, for all ¢ € G, multiplying by a~! on the right and left, we get
ga! = algforall g € G. Also, if a,b € Z, then abg = agb = gab for all
g € G, meaning that ab € Z. Thus, Z < G.

The center of GG is a normalizer for some subgroup H < G if and only if
G is abelian. First, if G abelian, then Z = G = C'({e}). Now suppose that
Z =C(H), for some H < G. Then, since H < C(H ), we would have H < Z.
But this would give us that H < G, since a 'Ha = H (because H being
in the center of the group, commutes with everything). But H < G implies
C(H)=G. So, Z = C(H) implies Z = G, and therefore G is abelian.

where

and where

19. I am not sure why this is a starred problem, as it is easier than
problem 15, which was not starred: If H has finite index in G, then there is
a finite number of left cosets a1 H, ..., apH and a finite number of right cosets
Hbq, ..., Hb, of H. So, each conjugate

a'Ha = (a;H)a = a;(Ha) = a;(Hb;) = a;Hb;

for some 7, 7 < k. So, the conjugates of H lie in the finite set of subsets of G
of the form

{aiHbj : 7’7.] = 1?7k}7

and therefore, there can be at most k? conjugates of H.

38. Let (a) be the largest cycle in G, and suppose that it has order n.
We will show that G = (a): First, note that every x € (a) satisfies 2" = e.
So, by the hypothesis of the problem, all the elements of G such that 2" = e
belong to (a).



Now suppose that (a) # G. Then, there exists some b € G such that
b & (a); and therefore, b" # e. We will presently show that there ex-
ist integers m,m’ such that the element y = a™b™ has order equal to
lem(order(a), order(b)) > order(a). Thus, (a) was not the largest cycle in
G, as (y) is even larger. This gives a contradiction, and we conclude that
G = (a).

To see how to pick m,m’ for our element y, we begin with the following
basic fact:

Claim. If the order of a is n, and the order of b is n’, and if ged(n,n’) =1,
then the order of ab is nn'.

Proof of the Claim. Let ¢ be the order of ab. Since (ab)! = e we conclude
a® = b7'. Thus, a' belongs to the cycle (a) and to the cycle (b). Now
suppose that ¢ € (a) N (b). Then, ¢* = e and ¢ = e; so, upon writing
the ged(n,n’) = 1 as a linear combination, we see that e = ¢8°d(») = ¢
So, (a) N (b) = {e}, and we conclude that a* = e. Thus, n|t. A similar
calculation shows that n'|t, and then since (n,n') =1 we conclude nn’|t. To
show t = nn’ one just observes that (ab)™ = a™ ' b"™ = e.

It is a fairly simple exercise to now show that there exist integers m,m’
such that order(a)/m and order(b)/m’ are coprime, and

lem(order(a), order(b)) = lem <order(a)’ order(b)).

m m!

If so, then order(a™) is coprime to order(b™'), and we may apply the above
claim to finish the proof of the theorem.
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1. If aHbH = cH for all a,b € G, then consider what happens when
b = a'. We have that aHa 'H = cH for some c. In fact, ¢ = e since
aHa 'H contains e, and the only left-coset ¢cH of H containing e is the
trivial coset H iteself. Thus, aHa 'H = H. This obviously means that
a 'Ha = H, and therefore H < G.

12. In the finite version of this problem, we have that since M NN = {e},
from the fact that |[MN| = |[M||N|/|M N N| = |M||N|, we deduce that all
the products mn, m € M and n € N, must be distinct.



Now, since N <G, we deduce that mN = Nm, and therefore mn = n'm,
for some n’ € N. We will show that n’ = n. To do this, we also use the
normality of M, which tells us that n’M = Mn/, and therefore n'm = m'n/,
for some m’ € M. So, we have mn = n’'m = m/n/, and then using the fact
that every element of M N has a unique representation as mn, m € M and
n € N, we conclude that m’ = m and n’ = n. Therefore, mn = n'm = nm,
and we are done.
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8.

a. Since G has 2n elements, and since N has n elements, since we know
all index-2 subgroups of a group are normal, to show N <G it suffices to show
N < G: We will prove N is a subgroup using the 1-step subgroup test, which
amounts to checking that if a,b € N, then ab=* € N. In our case if a,b € N,
then @ = y* and b = 3/ for some 0 <, <n—1. So, b=! = y*J. Therefore,
ab ™! = ¢y =y where 0 < m <n—-landm=i+n—j=i—j
(mod n). Thus, ab™! € N, and we are done.

b. Since N<G we may form the quotient group G /N, which has |G|/|N| =
2 elements. Since there is only one isomorphism class of groups of order 2,
namely the cyclic group {1,—1} (under multiplication) or Z, (under addi-
tion), we conlude that G/N = {1, —1} (multiplication).



