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1.

a. Yes, x — —x is an automorphism.

b. Yes, x — 22 is an automorphism of the positive reals. Let’s see:
Clearly, it is a bijection from RT — R*. Also, T'(ab) = (ab)* = a’h® =
T(a)T'(b). What saved us here was that multiplication of reals is commuta-
tive; otherwise, the squareing map would not be a homomorphism.

c. No, x — 2? is not an automorphism if G is cyclic of order 12, because
it fails to be injective (the image has order 4).

d. No, z — x~! is not an automorphism on Ss, because it doesn’t preserve
structure, so is not even a homomorpism.

5. Let A denote the set of automorphisms of GG, and let I denote the set
of all inner automorphisms. Now let ¢ € A, a € I, be arbitrary. We have
then that a(g) = a~'ga for some a € G. Now, since ¢ is an automorphism,
s0 is ¢! (remember the problem on the exam?). So, for an arbitrary g € G
we have

(e lap)(g) = (¢

If let let b = ¢~ '(a), then we observe that this last expression is just b='gb,
meaning that ¢~ 'ayp is an inner automorphism, menaing that o 1Ty = I,
meaning that I < A.



12. This was a problem I mentioned in class earlier in the semester, that
was part of the qualifying exams at U. C. Berkeley (By the way, as good
practice for the Putnam exam, there is a book with past qualifying exams
for UCB math called something like Berkeley Problems).

First, suppose that T'(x) = 2~! for more than 3|G|/4 of the elements x of
G, where T' is an automorphism. Let a € G be one of these elements where
T(a)=a"'.

Now, as we run through the values b € G, at least 3|G|/4 of them will
satisfy T'(ab) = (ab)™'; and, among these values b, fewer than |G|/4 of them
fail to satisfy T'(b) = b=!. So, there are more than 3|G|/4 — |G|/4 elements
b € G satisfying both

T(ab) = (ab)™" and T(b) =b"".
Thus, for each of these elements b we will have
a vt = T(a)T(b) = T(ab) = (ab)™" = b ta™

or, put another way;,
ab = ba.

This tells us that the centralizer of a, denoted by C(a), contains more that
|G|/2 values b € G; and so, since |C(a)|||G|, we conclude that C(a) = G,
and therefore a € Z, the center of the group. Since Z contains more than
3|G|/4 elements a (that satisfy T'(a) = a™!), and since | Z|||G|, we conclude
that |Z| = |G|, and therefore Z = G, and therefore G is abelian.
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6. This is an immediate consequence of the fact that groups of order p?
are abelian.

Another way to prove the claim is as follows: Let H be the subgroup
of G having order p. Since H is normal, we know that it is closed under
conjugation: That is, for every g € G we have g"'Hg = H. This allows us to
decompose H into orbits under conjugation by elements of GG in a nice way,
since all the conjugates belong to H. That is



where the O; are the distinct orbits for conjugation. One of these orbits
has only one element, namly the identity. The remaining orbits must have
either 1 or p elements. Clearly, they cannot have p elements, because then
the identity together with this p orbit give p 4+ 1 elements, which is more
than |H|. So, all the orbits have size 1, and we conclude that for every
g€ G,he€ H, gothg = h, which implies H < Z.

7. Pick an arbitrary element g € G, g # e. Then, g has order p or p?. If
¢ has order p?, then G is cyclic, and therefore abelian, and we are done. If
g has order p, then (g) lies in Z from problem 6. Thus, every element of G
lies in Z (since g was arbitrary), and we conclude G is abelian.
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11. One way (perhaps not the simplest) to solve this problem is to start
by taking conjugates of (1 2): First, note that I do my cycle multiplications
from right-to-left, not left-to-right like Herstein. Now, then, we have that for
j=1..,n—-2

(12 - n)f(12)(12--n)7 = (j+1j5+2),

and for j = n — 1, this conjugation gives (n 1). Note that (12 --- n)™7 =
(12 --- n)n—j.

So, we have the transpositions (1 2),(2 3), (34),...(n—1n),(n 1) in our
subgroup. From these we can get all other transpositions: First, we can get
all transpositions (1 7) by doing the following. We have

(13) = 23)(12)23),

then
(14) = (34)(13)(34),

then
(15) = (45)(14)(45),

and so on (requires an induction proof). Once we have that we can get all
other transpositions as follows: For a # b, and a,b # 1 we have

(ab) = (1a)(10b)(1a).

So, our subgroup contains all transpositions, and therefore equals S,,.



