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1.

a. Yes, x → −x is an automorphism.
b. Yes, x → x2 is an automorphism of the positive reals. Let’s see:

Clearly, it is a bijection from R
+ → R

+. Also, T (ab) = (ab)2 = a2b2 =
T (a)T (b). What saved us here was that multiplication of reals is commuta-
tive; otherwise, the squareing map would not be a homomorphism.

c. No, x → x3 is not an automorphism if G is cyclic of order 12, because
it fails to be injective (the image has order 4).

d. No, x → x−1 is not an automorphism on S3, because it doesn’t preserve
structure, so is not even a homomorpism.

5. Let A denote the set of automorphisms of G, and let I denote the set
of all inner automorphisms. Now let ϕ ∈ A, α ∈ I, be arbitrary. We have
then that α(g) = a−1ga for some a ∈ G. Now, since ϕ is an automorphism,
so is ϕ−1 (remember the problem on the exam?). So, for an arbitrary g ∈ G
we have

(ϕ−1αϕ)(g) = (ϕ−1α)(ϕ(g))

= ϕ−1(a−1ϕ(g)a)

= [ϕ−1(a−1)][ϕ−1ϕ)(g)][ϕ−1(a)] (Here we used ϕ−1 is automorphism.)

= [ϕ−1(a)]−1gϕ−1(a).

If let let b = ϕ−1(a), then we observe that this last expression is just b−1gb,
meaning that ϕ−1αϕ is an inner automorphism, menaing that ϕ−1Iϕ = I,
meaning that I / A.
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12. This was a problem I mentioned in class earlier in the semester, that
was part of the qualifying exams at U. C. Berkeley (By the way, as good
practice for the Putnam exam, there is a book with past qualifying exams
for UCB math called something like Berkeley Problems).

First, suppose that T (x) = x−1 for more than 3|G|/4 of the elements x of
G, where T is an automorphism. Let a ∈ G be one of these elements where
T (a) = a−1.

Now, as we run through the values b ∈ G, at least 3|G|/4 of them will
satisfy T (ab) = (ab)−1; and, among these values b, fewer than |G|/4 of them
fail to satisfy T (b) = b−1. So, there are more than 3|G|/4 − |G|/4 elements
b ∈ G satisfying both

T (ab) = (ab)−1 and T (b) = b−1.

Thus, for each of these elements b we will have

a−1b−1 = T (a)T (b) = T (ab) = (ab)−1 = b−1a−1;

or, put another way,
ab = ba.

This tells us that the centralizer of a, denoted by C(a), contains more that
|G|/2 values b ∈ G; and so, since |C(a)|||G|, we conclude that C(a) = G,
and therefore a ∈ Z, the center of the group. Since Z contains more than
3|G|/4 elements a (that satisfy T (a) = a−1), and since |Z|||G|, we conclude
that |Z| = |G|, and therefore Z = G, and therefore G is abelian.
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6. This is an immediate consequence of the fact that groups of order p2

are abelian.
Another way to prove the claim is as follows: Let H be the subgroup

of G having order p. Since H is normal, we know that it is closed under
conjugation: That is, for every g ∈ G we have g−1Hg = H. This allows us to
decompose H into orbits under conjugation by elements of G in a nice way,
since all the conjugates belong to H. That is

H =
k⋃

i=1

Oi,
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where the Oi are the distinct orbits for conjugation. One of these orbits
has only one element, namly the identity. The remaining orbits must have
either 1 or p elements. Clearly, they cannot have p elements, because then
the identity together with this p orbit give p + 1 elements, which is more
than |H|. So, all the orbits have size 1, and we conclude that for every
g ∈ G, h ∈ H, g−1hg = h, which implies H < Z.

7. Pick an arbitrary element g ∈ G, g 6= e. Then, g has order p or p2. If
g has order p2, then G is cyclic, and therefore abelian, and we are done. If
g has order p, then (g) lies in Z from problem 6. Thus, every element of G
lies in Z (since g was arbitrary), and we conclude G is abelian.
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11. One way (perhaps not the simplest) to solve this problem is to start
by taking conjugates of (1 2): First, note that I do my cycle multiplications
from right-to-left, not left-to-right like Herstein. Now, then, we have that for
j = 1, ..., n − 2,

(1 2 · · · n)j(1 2)(1 2 · · · n)−j = (j + 1 j + 2),

and for j = n − 1, this conjugation gives (n 1). Note that (1 2 · · · n)−j =
(1 2 · · · n)n−j.

So, we have the transpositions (1 2), (2 3), (3 4), ...(n− 1 n), (n 1) in our
subgroup. From these we can get all other transpositions: First, we can get
all transpositions (1 j) by doing the following. We have

(1 3) = (2 3)(1 2)(2 3),

then
(1 4) = (3 4)(1 3)(3 4),

then
(1 5) = (4 5)(1 4)(4 5),

and so on (requires an induction proof). Once we have that we can get all
other transpositions as follows: For a 6= b, and a, b 6= 1 we have

(a b) = (1 a)(1 b)(1 a).

So, our subgroup contains all transpositions, and therefore equals Sn.
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