

Selected Solutions to Homework 3, Math 4107

October 25, 2005

Page 70.

1.

- a. Yes, $x \rightarrow -x$ is an automorphism.
- b. Yes, $x \rightarrow x^2$ is an automorphism of the positive reals. Let's see: Clearly, it is a bijection from $\mathbb{R}^+ \rightarrow \mathbb{R}^+$. Also, $T(ab) = (ab)^2 = a^2b^2 = T(a)T(b)$. What saved us here was that multiplication of reals is commutative; otherwise, the squareing map would not be a homomorphism.
- c. No, $x \rightarrow x^3$ is not an automorphism if G is cyclic of order 12, because it fails to be injective (the image has order 4).
- d. No, $x \rightarrow x^{-1}$ is not an automorphism on S_3 , because it doesn't preserve structure, so is not even a homomorphism.

5. Let A denote the set of automorphisms of G , and let I denote the set of all inner automorphisms. Now let $\varphi \in A$, $\alpha \in I$, be arbitrary. We have then that $\alpha(g) = a^{-1}ga$ for some $a \in G$. Now, since φ is an automorphism, so is φ^{-1} (remember the problem on the exam?). So, for an arbitrary $g \in G$ we have

$$\begin{aligned}(\varphi^{-1}\alpha\varphi)(g) &= (\varphi^{-1}\alpha)(\varphi(g)) \\ &= \varphi^{-1}(a^{-1}\varphi(g)a) \\ &= [\varphi^{-1}(a^{-1})][\varphi^{-1}\varphi](g)[\varphi^{-1}(a)] \text{ (Here we used } \varphi^{-1} \text{ is automorphism.)} \\ &= [\varphi^{-1}(a)]^{-1}g\varphi^{-1}(a).\end{aligned}$$

If let let $b = \varphi^{-1}(a)$, then we observe that this last expression is just $b^{-1}gb$, meaning that $\varphi^{-1}\alpha\varphi$ is an inner automorphism, meaning that $\varphi^{-1}I\varphi = I$, meaning that $I \triangleleft A$.

12. This was a problem I mentioned in class earlier in the semester, that was part of the qualifying exams at U. C. Berkeley (By the way, as good practice for the Putnam exam, there is a book with past qualifying exams for UCB math called something like Berkeley Problems).

First, suppose that $T(x) = x^{-1}$ for more than $3|G|/4$ of the elements x of G , where T is an automorphism. Let $a \in G$ be one of these elements where $T(a) = a^{-1}$.

Now, as we run through the values $b \in G$, at least $3|G|/4$ of them will satisfy $T(ab) = (ab)^{-1}$; and, among these values b , fewer than $|G|/4$ of them fail to satisfy $T(b) = b^{-1}$. So, there are more than $3|G|/4 - |G|/4$ elements $b \in G$ satisfying both

$$T(ab) = (ab)^{-1} \text{ and } T(b) = b^{-1}.$$

Thus, for each of these elements b we will have

$$a^{-1}b^{-1} = T(a)T(b) = T(ab) = (ab)^{-1} = b^{-1}a^{-1};$$

or, put another way,

$$ab = ba.$$

This tells us that the centralizer of a , denoted by $C(a)$, contains more than $|G|/2$ values $b \in G$; and so, since $|C(a)| \geq |G|/2$, we conclude that $C(a) = G$, and therefore $a \in Z$, the center of the group. Since Z contains more than $3|G|/4$ elements a (that satisfy $T(a) = a^{-1}$), and since $|Z| \geq |G|/2$, we conclude that $|Z| = |G|$, and therefore $Z = G$, and therefore G is abelian.

Page 74

6. This is an immediate consequence of the fact that groups of order p^2 are abelian.

Another way to prove the claim is as follows: Let H be the subgroup of G having order p . Since H is normal, we know that it is closed under conjugation: That is, for every $g \in G$ we have $g^{-1}Hg = H$. This allows us to decompose H into orbits under conjugation by elements of G in a nice way, since all the conjugates belong to H . That is

$$H = \bigcup_{i=1}^k O_i,$$

where the O_i are the distinct orbits for conjugation. One of these orbits has only one element, namely the identity. The remaining orbits must have either 1 or p elements. Clearly, they cannot have p elements, because then the identity together with this p orbit give $p + 1$ elements, which is more than $|H|$. So, all the orbits have size 1, and we conclude that for every $g \in G, h \in H, g^{-1}hg = h$, which implies $H < Z$.

7. Pick an arbitrary element $g \in G, g \neq e$. Then, g has order p or p^2 . If g has order p^2 , then G is cyclic, and therefore abelian, and we are done. If g has order p , then (g) lies in Z from problem 6. Thus, every element of G lies in Z (since g was arbitrary), and we conclude G is abelian.

Page 80.

11. One way (perhaps not the simplest) to solve this problem is to start by taking conjugates of $(1\ 2)$: First, note that I do my cycle multiplications from right-to-left, not left-to-right like Herstein. Now, then, we have that for $j = 1, \dots, n - 2$,

$$(1\ 2\ \dots\ n)^j(1\ 2)(1\ 2\ \dots\ n)^{-j} = (j + 1\ j + 2),$$

and for $j = n - 1$, this conjugation gives $(n\ 1)$. Note that $(1\ 2\ \dots\ n)^{-j} = (1\ 2\ \dots\ n)^{n-j}$.

So, we have the transpositions $(1\ 2), (2\ 3), (3\ 4), \dots, (n - 1\ n), (n\ 1)$ in our subgroup. From these we can get all other transpositions: First, we can get all transpositions $(1\ j)$ by doing the following. We have

$$(1\ 3) = (2\ 3)(1\ 2)(2\ 3),$$

then

$$(1\ 4) = (3\ 4)(1\ 3)(3\ 4),$$

then

$$(1\ 5) = (4\ 5)(1\ 4)(4\ 5),$$

and so on (requires an induction proof). Once we have that we can get all other transpositions as follows: For $a \neq b$, and $a, b \neq 1$ we have

$$(a\ b) = (1\ a)(1\ b)(1\ a).$$

So, our subgroup contains all transpositions, and therefore equals S_n .