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1. There are 3 different classes: {e}, {(1 2), (1 3), (2 3)}, {(1 2 3), (1 3 2)}.
We have that ce = 1, c(1 2) = 3, and c(1 2 3) = 2. And, note that

|S3| = 6 = 1 + 3 + 2.

4. One way that we can define the Dihedral group is through the symbols
R, which means rotate clockwise by 2π/n, and F , which means flip about a
specific vertex. We have that Rn = F 2 = e, and FR = R−1F . This uniquely
determines the properties of Dn, and we have that it contains the 2n distinct
elements e, R,R2, ..., Rn−1, F, FR, FR2, ..., FRn−1.

Now, if r is one of the pure rotations e, ..., Rn−1, and α is also a pure
rotation, then α−1rα = r. On the other hand, if α = FRj, then

α−1rα = (R−jF )r(FRj) = FRjrR−jF = FrF = r−1.

So, the set of conjugates of r are {r, r−1}.
Now we consider the conjugates of FRj. If Ri is any pure rotation, then

R−iFRjRi = FR2i+j . Thus, the conjugates of FRj can be described as
{FRk : k ≡ j (mod 2)}.

In the case where n is even we have that the conjugates of elements of the
form FRj break down into two classes, those of the form {FRk : k even},
and those of the form {FRk : k odd}. Also, the conjuages of a pure rotation
r take the form {r, r−1}. There is only one case where this set contains only
one element, and that is when r is a rotation by 180 degrees. So, in the case
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n even we will have that the class sizes ca = 1 only if a is the identity or
rotation by 180 degrees; ca = 2 if a is any other pure rotation; and, there are
two classes where ca = n/2. In total we will have that

∑
ca = 1 + 1 +

n− 2

2
× |cR| + |cFR| + |cFR2 | = n + n/2 + n/2 = 2n.

In the case n odd all the sets {r, r−1} have two elements, and there is
only one equivalence class for FR. So, in this case we have cRj = 2, cFR = n.
So,

∑
ca = 1 +

n− 1

2
|cR| + |cFR| = 1 + (n− 1) + n = 2n.

5.

a. For every r cycle in Sn, there are r different ways that it can be written
in the form (x1 x2 · · · xr); for example, the 3-cycle (1 2 3) could also be
written as (2 3 1) or (3 1 2). Now, the number of ways of writing the cycle is
the number of sequences of r numbers chosen from among 1, ..., n, and there
are n(n−1) · · · (n− r+1) = n!/(n− r)! such sequences. In total, then, there
are n!/(r(n− r)!) r-cycles in Sn.

b. The set of conjugates of an element α ∈ Sn is the set of all elements
having the same cycle structure as α. So, the conjuages of a cycle (x1 · · · xr)
is the set of all r-cycles. So, there are n!/(r(n− r)!) conjugates of (1 · · · r).

c. σ commutes with the cycle c = (1 2 · · · r) if and only if

σcσ−1 = (σ(1) σ(2) · · · σ(r)) = (1 2 · · · r).

Now, these last two cycles are equal if and only if for some j = 0, ..., r − 1
we have

σ(i) ≡ i+ j (mod r), for i = 1, ..., r.

Thus, σ fixes r + 1, ..., n, and acts as (1 · · · r)j on {1, ..., r}. It follows that

σ = (1 2 · · · r)jτ,

where τ fixes r + 1, ..., n.
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7.

a. The number of 3-Sylow subgroups divides 30 and is congruent to
1 (mod 3). So, this number is 1 or 10. Similarly, the number of 5-Sylow
subgroups divides 30 and is 1 (mod 5), giving us 1 or 6 of them. We cannot
have that there are both 10 Sylow-3 subgroups, and 6 Sylow-5 subgroups,
because from the Sylow-3 subgroups we would get 20 elements of order 3,
and from the Sylow-5 subgroups we would get 24 elements of order 5. In
total, we would have 20 + 24 = 44 elements, which exceeds 30.

We conclude that either there is only one Sylow-3, or there is only one
Sylow-5. Since all Sylow-3’s are conjugate to each other, and since all Sylow-
5’s are conjugate to each other, we will have that either the Sylow-3 is normal
or the Sylow-5 is normal.

b. Say that the 3-Sylow in part a is normal, and write it as P . Consider
then the map ϕ : G→ G/P . We have that |G/P | = 10, and it is easy to see
that there can be only one Sylow-5 in that group, for the number of sylow-5’s
must be 1 (mod 5) and divide 10. Now, each sylow-5 back in G must map
to a Sylow-5 in G/P , because if a ∈ G has order 5, then ϕ(a) has order 5
in G/P (since, ϕ(a)5 = ϕ(a5) = ϕ(1) = 1, we either have a is in the kernel,
or else a has order 5. If a is in the kernel, it must have belonged to P , but
we know that P intersects the Sylow-5’s only at the identity.) So, if there
were six Sylow-5’s in G, then they must all map down to a single Sylow-5 in
G/P . This cannot happen, though, because it would mean that ϕ is at best
a six-to-1 map, but it is a 3-to-1 map. So, the Sylow-5 must be normal.

Similarly, if the Sylow-5 was the one that was normal in part a, then we
can’t have that there are 10 Sylow-3’s: If Q is that Sylow-5, then ψ : G →
G/Q is 5-to-1, and yet since |G/Q| = 6 has at most one Sylow-3, if there
were 10 Sylow-3’s in G, then ψ would have to be 10 to 1.

c. From part b, if P is our Sylow-3 and Q is our Sylow-5, both of which
are normal, then G contains PQ, which has order 15. Since PQ has index
|G|/15 = 2, it must be normal. (Because G has only two left-cosets of PQ,
namely PQ, aPQ, and only two right cosets PQ, PQa. Both aPQ and PQa
are the elements of G not contained in PQ, and so aPQ = PQa, and left
cosets equal right cosets, which gives us that PQ is normal.)

d. As we know, all groups of order 15 are ableian and cyclic. So, half
of G is this large cyclic group of order 15. Now, suppose that x ∈ G has
order 2. Such x exist, since G must have a 2-Sylow subgroup. Let C = PQ.
Then, G = C ∪ (xC) (Note that xC is disjoint from C, because xC contains
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x, which has order 2, while every element of C has order dividing 15).
How can we multiply elements in G? To answer that question, we begin

by observing that since C is normal, xCx = x−1Cx = C. So, conjugation
by x is an automorphism of C. All automorphisms of a cyclic group take
the form θ(c) = cj, where j is coprime to the order of G. Therefore, we
must have that there exists j such that xc = cjx for all c ∈ C; moreover,
j can only be one of 1, 2, 4, 7, 8, 11, 13, 14. We can further reduce the list of
possible j by observing that xcx = cj implies c = xcjx = (xcx)j = cj

2

So,
cj

2
−1 = e, which imlies j2 − 1 ≡ 0 (mod 15). This means that j can only

be 1, 4, 11, 14. Once we have settled on a value for j we have completely
pinned down how we multiply in our group: An arbitrary g ∈ G has the
form xc or c, where c ∈ C. And, if g1 = xc1 and g2 = xc2, for example, then
g1g2 = xc1xc2 = x2cj1c2 = cj1c2.

If j = 1, then we are saying that x commutes with C, and we would have
that G is an abelian group of order 30, which must be cyclic.

If j = 14 ≡ −1 (mod 15), then we have that G satisfies the relations of
a dihedral group D15, which we know has order 30 and is non-abelain.

The other two values j = 4 and 11 also turn out to give us two more
non-abelian groups. In total, then there are 3 non-abelian groups of order
30, and 1 abelian group of order 30.

15.

a. What (ab)p = apbp is really saying is that taking pth powers is a homo-
morphism from G to G (though not necessarily an automorphism, because
it may fail to be injective). We must also have then that (ab)p2

= ((ab)p)p =
(apbp)p = ap2

bp
2

; and, in fact, (ab)pj

= apj

bp
j

.
Suppose now that P is any p-Sylow subgroup of G having size |P | = pJ .

Then, as we know, ϕ : G → G given by ϕ(a) = apJ

is a homomorphism.
The kernel consists of all elements of order dividing pJ , which must include
any and all Sylow-p subgroups. But, in fact, this kernel is itself a p-group,
because if q||ker(ϕ)|, q 6= p, q prime, then the by Sylow’s theorem this kernel
(being a subgroup) would have to contain an element of order q. Call this
element a. Then we have aq = e and apJ

= e, which is impossible unless
a = e. So, since the kernel is a p-group, its order is at most of size |P |; but,
since it also contains P , its order is at least |P |, meaning that the kernel has
size |P | and is a Sylow-p itself.

Because the kernel is normal Sylow-p, and because all the other (po-
tential) Sylow-p’s are conjugate to it, we must have that there is only one
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Sylow-p, namely P .

b. We know that (ab)pj

= apj

bp
j

, for all j. Now, write |G| = pJm, where
p does not divide m. Then, it is not difficult to show that there exits an
integer k such that pk ≡ 1 (mod m); and so, pk ≡ 1 (mod d), for any
divisor d of m.

Let N be the set of all elements of G such that xm = 1. We claim that N
is a subgroup of G, and is in fact the subgroup we are looking for (but that
takes some work to prove). Since G is finite, to show N < G we just need to
check that if a, b ∈ N , then ba ∈ N . To this end, we start with

(ab)pk

= apk

bp
k

.

Now, if you write out the left-hand-side, you get

abababab · · · ab = aaaaaaa · · · abbbbbb · · · b.

If we cancel off an a on the left and a b on the right of both sides, we get

(ba)pk
−1 = apk

−1bp
k
−1.

Now, since pk ≡ 1 (mod m) we have m|pk − 1; and so, the right-hand-side
here is just the identity. That is to say,

(ba)pk
−1 = e.

Thus, the order of ba must divide pk − 1, and it must divide |G| = pJm. It
follows that the order of ba divides m, and therefore

(ba)m = e,

which means ba ∈ N . Thus, N is a subgroup.
Next, we show that |N | = m. To do that, we observe that if qj||m, where

q is prime, then G contains a Sylow-q subgroup of order qj. This subgroup
lies in N , since am = e for every a in this Sylow-q. Since N contains these
Sylow-q’s, for all primes q 6= p, we must have that product of the orders of
these subgroups divides |N |. But, the product of these orders equals m, and
so m||N |. It is easy to see that |N | also divides m, giving us |N | = m (for
if not, then |N | is divisible by a power of p, meaning that it contains an
element b of order p, which will fail to satisfy bm = e).
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Finally, we wish to show that N is normal in G; if so, then G = NP , and
we are done. First, we observe that the cosets Nq, where q runs through the
elements of P are all disjoint and their union is G (because, if Nq and Nq ′

have an element in common, then q(q′)−1 ∈ N , which means it is the identity
or has order dividing |N |; the latter is impossible, since the order of q(q ′)−1

is a power of p, and p does not divide m.). We likewise can decompose G
into left cosets of N as qN , where q runs through the elements of P . Now,
if pk ≡ 1 (mod m) and if k > J (so that pk > |P |), then for every element
nq of the coset Nq we have

(nq)pk
−1 = qpk

−1npk
−1 = q−1.

So, Nq is the set of those elements sent to q−1 upon taking (pk−1)th powers.
A similar computation shows qN is also those elements sent ot q−1. Thus,

qN = Nq,

and we deduce that N is normal.
c. P by itself has a non-trivial center, being a p-group. Now suppose

q ∈ P lies in the center of P . If we always have q lies in the center of G, then
the center of G is non-trivial.

We wish to show that q commutes with every element of G. To that
end, let nr be an arbitrary element of NP = G, with n ∈ N and r ∈ P .
Then, since nr ∈ nP = Pn, we have nr = r′n, for some r′ ∈ P ; also,
nr ∈ Nr = rN , implies nr = rn′. So, r′n = rn′ implies r−1r′ = n′n−1. Since
N and P are disjoint, the only way this could hold is if r−1r′ = e = n′n−1.
Thus, r = r′, and it follows that nr = rn. So,

q(nr) = qrn = rqn = rnq = (nr)q.

Here we have used the fact that q commutes with all of P , as well as the fact
that nr = rn. We conclude that q lies in the center of G, and we are done.
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