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1. There are 3 different classes: {e}, {(12), (13),(23)},{(123), (132)}.
We have that ¢, = 1, ¢ 2) = 3, and ¢ 2 3y = 2. And, note that

S5 = 6 = 1+3+2.

4. One way that we can define the Dihedral group is through the symbols
R, which means rotate clockwise by 27 /n, and F', which means flip about a
specific vertex. We have that R" = ['? = ¢, and FR = R™'F. This uniquely
determines the properties of D,,, and we have that it contains the 2n distinct
elements e, R, R?, ..., R"" ', F, FR, FR? .., FR" ..

Now, if r is one of the pure rotations e, ..., R"!, and « is also a pure
rotation, then a~'ra. = r. On the other hand, if « = FR7, then

o 'ra = (R7F)r(FR') = FRIrRTF = FrF = r~ L

So, the set of conjugates of r are {r,r=1}.

Now we consider the conjugates of FFR?. If R' is any pure rotation, then
RTFR'R' = FR*%. Thus, the conjugates of FR’ can be described as
{FR¥: k=3j (mod 2)}.

In the case where n is even we have that the conjugates of elements of the
form F R’ break down into two classes, those of the form {FR* : k even},
and those of the form {FR* : k odd}. Also, the conjuages of a pure rotation
r take the form {r,7=1}. There is only one case where this set contains only
one element, and that is when r is a rotation by 180 degrees. So, in the case



n even we will have that the class sizes ¢, = 1 only if a is the identity or
rotation by 180 degrees; ¢, = 2 if a is any other pure rotation; and, there are
two classes where ¢, = n/2. In total we will have that

n—2

g = 1+1+ X |cr| + |lerr| + |crr2| = n+n/24+n/2 = 2n.

In the case n odd all the sets {r,r~'} have two elements, and there is
only one equivalence class for F'R. So, in this case we have cp; = 2, cpg = n.

So,
n—1
an:1+ 5 |CR|+|CFR| :1—|—(n—1)+n:2n
5.
a. For every r cycle in S, there are r different ways that it can be written
in the form (x; x5 --- z,); for example, the 3-cycle (1 2 3) could also be

written as (23 1) or (3 1 2). Now, the number of ways of writing the cycle is
the number of sequences of r numbers chosen from among 1, ..., n, and there
aren(n—1)---(n—r+1) = n!/(n—r)! such sequences. In total, then, there
are n!/(r(n —r)!) r-cycles in S,,.

b. The set of conjugates of an element o € S,, is the set of all elements

having the same cycle structure as «. So, the conjuages of a cycle (z1 -+ ;)
is the set of all r-cycles. So, there are n!/(r(n — r)!) conjugates of (1 --- 7).
c. o commutes with the cycle ¢ = (12 --- r) if and only if

oco™t = (c(1) a(2) - a(r)) = (12 - 7).

Now, these last two cycles are equal if and only if for some j = 0,...,7 — 1
we have
o(i) = i+j (modr), fori=1,..r.

Thus, o fixes r +1,...,n, and acts as (1 --- r)? on {1,...,r}. It follows that
o= (12 7r)r
where 7 fixes r + 1, ..., n.
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7.

a. The number of 3-Sylow subgroups divides 30 and is congruent to
1 (mod 3). So, this number is 1 or 10. Similarly, the number of 5-Sylow
subgroups divides 30 and is 1 (mod 5), giving us 1 or 6 of them. We cannot
have that there are both 10 Sylow-3 subgroups, and 6 Sylow-5 subgroups,
because from the Sylow-3 subgroups we would get 20 elements of order 3,
and from the Sylow-5 subgroups we would get 24 elements of order 5. In
total, we would have 20 4 24 = 44 elements, which exceeds 30.

We conclude that either there is only one Sylow-3, or there is only one
Sylow-5. Since all Sylow-3’s are conjugate to each other, and since all Sylow-
5’s are conjugate to each other, we will have that either the Sylow-3 is normal
or the Sylow-5 is normal.

b. Say that the 3-Sylow in part a is normal, and write it as P. Consider
then the map ¢ : G — G/P. We have that |G/P| = 10, and it is easy to see
that there can be only one Sylow-5 in that group, for the number of sylow-5’s
must be 1 (mod 5) and divide 10. Now, each sylow-5 back in G must map
to a Sylow-5 in G/P, because if a € G has order 5, then ¢(a) has order 5
in G/P (since, ¢(a)® = ¢(a®) = p(1) = 1, we either have a is in the kernel,
or else a has order 5. If a is in the kernel, it must have belonged to P, but
we know that P intersects the Sylow-5’s only at the identity.) So, if there
were six Sylow-5s in GG, then they must all map down to a single Sylow-5 in
G/P. This cannot happen, though, because it would mean that ¢ is at best
a six-to-1 map, but it is a 3-to-1 map. So, the Sylow-5 must be normal.

Similarly, if the Sylow-5 was the one that was normal in part a, then we
can’t have that there are 10 Sylow-3’s: If () is that Sylow-5, then ¢ : G —
G/Q is 5-to-1, and yet since |G/Q)| = 6 has at most one Sylow-3, if there
were 10 Sylow-3’s in G, then 1 would have to be 10 to 1.

¢. From part b, if P is our Sylow-3 and @) is our Sylow-5, both of which
are normal, then GG contains P(), which has order 15. Since P() has index
|G| /15 = 2, it must be normal. (Because G has only two left-cosets of PQ),
namely PQ,aP(Q), and only two right cosets PQ, PQa. Both aPQ and PQa
are the elements of G' not contained in PQ, and so aPQ = PQa, and left
cosets equal right cosets, which gives us that P is normal.)

d. As we know, all groups of order 15 are ableian and cyclic. So, half
of G is this large cyclic group of order 15. Now, suppose that x € G has
order 2. Such zx exist, since G must have a 2-Sylow subgroup. Let C' = P(Q).
Then, G = C'U (zC) (Note that zC' is disjoint from C, because 2C' contains



x, which has order 2, while every element of C' has order dividing 15).

How can we multiply elements in G? To answer that question, we begin
by observing that since C is normal, xCx = x~'Cx = C. So, conjugation
by z is an automorphism of C'. All automorphisms of a cyclic group take
the form 6(c) = ¢/, where j is coprime to the order of G. Therefore, we
must have that there exists j such that xzc = ¢/z for all ¢ € C; moreover,
7 can only be one of 1,2,4,7,8,11,13,14. We can further reduce the list of
possible j by observing that zcz = ¢/ implies ¢ = zc/z = (zcx) = & So,
¢*~1 = ¢, which imlies 52 —1 =0 (mod 15). This means that j can only
be 1,4,11,14. Once we have settled on a value for ;7 we have completely
pinned down how we multiply in our group: An arbitrary g € G has the
form xc or ¢, where ¢ € C. And, if g = xc; and gy = xcs, for example, then
g1g2 = TC1XCo = $2C’{C2 = 6{02-

If 5 = 1, then we are saying that z commutes with C, and we would have
that GG is an abelian group of order 30, which must be cyclic.

If j=14=—1 (mod 15), then we have that G satisfies the relations of
a dihedral group D75, which we know has order 30 and is non-abelain.

The other two values j = 4 and 11 also turn out to give us two more
non-abelian groups. In total, then there are 3 non-abelian groups of order
30, and 1 abelian group of order 30.

15.

a. What (ab)? = aPbP is really saying is that taking pth powers is a homo-
morphism from G to G (though not necessarily an automorphism, because
it may fail to be injective). We must also have then that (ab)?” = ((ab)P)P =
(aPbP)? = a’B°; and, in fact, (ab)?’ = a?’b*'.

Suppose now that P is any p-Sylow subgroup of G having size |P| = p’.
Then, as we know, ¢ : G — G given by p(a) = a?’ is a homomorphism.
The kernel consists of all elements of order dividing p’, which must include
any and all Sylow-p subgroups. But, in fact, this kernel is itself a p-group,
because if q||ker(¢)|, ¢ # p, ¢ prime, then the by Sylow’s theorem this kernel
(being a subgroup) would have to contain an element of order ¢. Call this
element a. Then we have a¢ = e and a?’ = e, which is impossible unless
a = e. So, since the kernel is a p-group, its order is at most of size | P|; but,
since it also contains P, its order is at least |P|, meaning that the kernel has
size |P| and is a Sylow-p itself.

Because the kernel is normal Sylow-p, and because all the other (po-
tential) Sylow-p’s are conjugate to it, we must have that there is only one



Sylow-p, namely P.

b. We know that (ab)? = a?’ b, for all j. Now, write |G| = p’m, where
p does not divide m. Then, it is not difficult to show that there exits an
integer k such that p* = 1 (mod m); and so, p* = 1 (mod d), for any
divisor d of m.

Let N be the set of all elements of G such that ™ = 1. We claim that N
is a subgroup of G, and is in fact the subgroup we are looking for (but that
takes some work to prove). Since G is finite, to show N < G we just need to
check that if a,b € N, then ba € N. To this end, we start with

(ab)”" = o’ W".
Now, if you write out the left-hand-side, you get
abababab - - -ab = aaaaaaa - - - abbbbbb - - - b.

If we cancel off an a on the left and a b on the right of both sides, we get

Now, since p* =1 (mod m) we have m|p* — 1; and so, the right-hand-side
here is just the identity. That is to say,

(ba)”" ! = e.

Thus, the order of ba must divide p* — 1, and it must divide |G| = p/m. It
follows that the order of ba divides m, and therefore

(ba)™ = e,

which means ba € N. Thus, N is a subgroup.

Next, we show that |N| = m. To do that, we observe that if ¢’/||m, where
q is prime, then G contains a Sylow-g subgroup of order ¢7. This subgroup
lies in NV, since a™ = e for every a in this Sylow-q. Since N contains these
Sylow-¢’s, for all primes ¢ # p, we must have that product of the orders of
these subgroups divides | N|. But, the product of these orders equals m, and
so m||N|. Tt is easy to see that |N| also divides m, giving us |N| = m (for
if not, then |N| is divisible by a power of p, meaning that it contains an
element b of order p, which will fail to satisfy ™ = e).
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Finally, we wish to show that N is normal in G; if so, then G = NP, and
we are done. First, we observe that the cosets Ng, where ¢ runs through the
elements of P are all disjoint and their union is G (because, if Ng and N¢'
have an element in common, then ¢(¢')™* € N, which means it is the identity
or has order dividing |N|; the latter is impossible, since the order of ¢(g’)~!
is a power of p, and p does not divide m.). We likewise can decompose G
into left cosets of N as ¢N, where ¢ runs through the elements of P. Now,
if ¥ =1 (mod m) and if k > J (so that p* > |P|), then for every element
nq of the coset Ng we have

pF—1 pF—1,_pk—1 -1

(nq) = ¢’ 'n = q

So, Ngq is the set of those elements sent to ¢~! upon taking (p* —1)th powers.

A similar computation shows ¢V is also those elements sent ot ¢~'. Thus,
gN = Ng,

and we deduce that N is normal.

c. P by itself has a non-trivial center, being a p-group. Now suppose
q € P lies in the center of P. If we always have ¢ lies in the center of GG, then
the center of G is non-trivial.

We wish to show that ¢ commutes with every element of G. To that
end, let nr be an arbitrary element of NP = G, with n € N and r € P.
Then, since nr € nP = Pn, we have nr = r'n, for some ' € P; also,
nr € Nr =rN, implies nr = rn’. So, r'n = rn’ implies r~!r’ = n’n=!. Since
N and P are disjoint, the only way this could hold is if r=17' = e = n'n~%.
Thus, r = »/, and it follows that nr = rn. So,

g(nr) = grn = rqn = rng = (nr)q.

Here we have used the fact that ¢ commutes with all of P, as well as the fact
that nr = rn. We conclude that ¢ lies in the center of G, and we are done.



