

Midterm 1, Math 4108, Spring 2010

March 1, 2010

- 1.** Define the following terms.
 - a. Algebraic extension.
 - b. Unique Factorization Domain.
 - c. Splitting field.
 - d. Eisenstein's criterion.
 - e. algebraic number.
- 2.** Compute the degree of the extension $F[x]/(x^2 - 2)$ over \mathbb{Q} , where $F = \mathbb{Q}(i)$, where $i^2 = -1$. Explain your answer.
- 3.** Determine the gcd of the polynomials $f(x) = x^5 + 3x^3 + 2x^2 + 2x + 2$ and $g(x) = x^5 + x^4 + 3x^3 + 4x^2 + 4x + 2$, where we think of $f, g \in \mathbb{F}_7[x]$.
- 4.** Suppose that K is an algebraic extension of a characteristic 0 field F , in which every $\alpha \in K$ satisfies some polynomial of degree at most $B > 0$ (i.e. we have an upper bound on the degree of elements in K). Prove that K is in fact a finite extension of F . (Hint: Primitive element theorem. If you don't know what it says, ask me in class [it is was not on the study sheet... and this problem is too nice not to be on an exam].)
- 5.** Suppose that $f(x) \in F[x]$ is a degree n irreducible polynomial, and that E is some finite extension of F in which $f(x)$ has a root. Prove that n divides $[E : F]$.