Combinatorial proofs that $3(A . A)=\mathbb{F}_{p}$

April 3, 2011

1 Introduction

In this note we will show that if $A \subseteq \mathbb{F}_{p}^{\times}$and $|A|>p^{4 / 5}$ then $A . A+A . A+$ $A . A=\mathbb{F}_{p}$. Perhaps the proof can be modified so that the exponent $4 / 5$ can be replaced with $3 / 4$, thereby matching what we get using Fourier methods.

2 The proof

We will use a type of "second moment method". To this end we find an exact formula for
$E:=\sum_{x_{1} \in A, x_{3}, x_{5} \in \mathbb{F}_{p}} \sum_{x \in \mathbb{F}_{p}}\left(\left|\left\{x_{2}, x_{4}, x_{6} \in A: x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}=x\right\}\right|-|A|^{3} / p\right)^{2}$.
First, define

$$
S:=\sum_{x_{1} \in A, x_{3}, x_{5} \in \mathbb{F}_{p}} \sum_{x \in \mathbb{F}_{p}}\left|\left\{x_{2}, x_{4}, x_{6} \in A: x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}=x\right\}\right|^{2},
$$

and observe that

$$
E=S-p|A|^{7}
$$

So, we just need to find the value for S : we have that

$$
S=\sum_{x_{1} \in A, x_{3}, x_{5} \in \mathbb{F}_{p}}\left|\left\{x_{2}, x_{4}, x_{6}, x_{2}^{\prime}, x_{4}^{\prime}, x_{6}^{\prime} \in A: x_{1}\left(x_{2}-x_{2}^{\prime}\right)+x_{3}\left(x_{4}-x_{4}^{\prime}\right)+x_{5}\left(x_{6}-x_{6}^{\prime}\right)=0\right\}\right|
$$

For given $x_{1}, x_{2}, x_{3}, x_{4}, x_{6}, x_{2}^{\prime}, x_{4}^{\prime}, x_{6}^{\prime}$ with $x_{6} \neq x_{6}^{\prime}$, we have that there is a unique $x_{5} \in \mathbb{F}_{p}$ such that

$$
x_{1}\left(x_{2}-x_{2}^{\prime}\right)+x_{3}\left(x_{4}-x_{4}^{\prime}\right)+x_{5}\left(x_{6}-x_{6}^{\prime}\right)=0 .
$$

And if $x_{6}=x_{6}^{\prime}$ then we get a solution if and only if

$$
x_{1}\left(x_{2}-x_{2}^{\prime}\right)+x_{3}\left(x_{4}-x_{4}^{\prime}\right)=0
$$

(And x_{5} can be any element of \mathbb{F}_{p}.)
It follows that
$S=p|A|^{6}(|A|-1)+p|A| \sum_{x_{1} \in A, x_{3} \in \mathbb{F}_{p}}\left|\left\{x_{2}, x_{2}^{\prime}, x_{4}, x_{4}^{\prime} \in A: x_{1}\left(x_{2}-x_{2}^{\prime}\right)+x_{3}\left(x_{4}-x_{4}^{\prime}\right)=0\right\}\right|$.
And now given $x_{1}, x_{2}, x_{2}^{\prime}, x_{4}, x_{4}^{\prime}, x_{4} \neq x_{4}^{\prime}$, there is a unique $x_{3} \in \mathbb{F}_{p}$ satisfying

$$
x_{1}\left(x_{2}-x_{2}^{\prime}\right)+x_{3}\left(x_{4}-x_{4}^{\prime}\right)=0
$$

It follows that

$$
\begin{aligned}
S & =p|A|^{7}-p|A|^{5}+p^{2}|A|^{2} \sum_{x_{1} \in A}\left|\left\{x_{2}, x_{2}^{\prime} \in A: x_{1}\left(x_{2}-x_{2}^{\prime}\right)=0\right\}\right| \\
& =p|A|^{7}-p|A|^{5}+p^{2}|A|^{4}
\end{aligned}
$$

where here we have used the fact that $0 \notin A$ to obtain the value of this last sum. Therefore,

$$
E<p^{2}|A|^{4}
$$

Suppose now that there exists an $x \in \mathbb{F}_{p}$ that is not contained in $3(A . A)$.
Then,
$\sum_{x_{1}, x_{3}, x_{5} \in A}\left(\left|\left\{x_{2}, x_{4}, x_{6} \in A: x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}=x\right\}\right|-|A|^{3} / p\right)^{2}=\sum_{x_{1}, x_{3}, x_{5} \in A}|A|^{6} / p^{2}=|A|^{9} / p^{2}$.
In order for this to be less than our upper bound for E we must have that

$$
|A|^{9} / p^{2}<p^{2}|A|^{4}
$$

which implies

$$
|A|<p^{4 / 5}
$$

So, as long as $|A|>p^{4 / 5}$ we will have $3(A . A)=\mathbb{F}_{p}$.

