A second combinatorial proof on when $3(A . A)=\mathbb{F}_{p}$

April 9, 2011

1 Introduction

In the last note on this topic we saw how we could use the second moment method to show that if $A \subseteq \mathbb{F}_{p}^{\times}$and $|A| \geq p^{4 / 5}$, then $3(A . A)=\mathbb{F}_{p}$, which is a little weaker than what Fourier methods give. The purpose of this note is to give yet another combinatorial proof along these lines by making use of a lemma due to Javier Cilleruelo on Sidon Sets (actually, the proof is just a trivial deduction from Cilleruelo's work).

Recall that a set A contained in an ambient abelian group G is said to be a Sidon Set if the only solutions to $a+b=a^{\prime}+b^{\prime}, a, b, a^{\prime}, b^{\prime} \in A$, are the trivial ones. That is,

$$
a+b=a^{\prime}+b^{\prime}, a, b, a^{\prime}, b^{\prime} \in A \quad \Longrightarrow \quad\{a, b\}=\left\{a^{\prime}, b^{\prime}\right\} .
$$

In the paper Combinatorial problems in finite fields and Sidon sets
http://arxiv.org/abs/1003.3576
Javier Cilleruelo proves, among many other theorems, the following (Corollary 4.3 in the paper):

Theorem 1 Let $X_{1}, X_{2} \subseteq \mathbb{F}_{p}^{\times}$and $X_{3}, X_{4} \subseteq \mathbb{F}_{p}$. The number S of solutions to

$$
x_{1} x_{2}=x_{3}+x_{4}, x_{i} \in X_{i}
$$

is

$$
S=\frac{\left|X_{1}\right|\left|X_{2}\right|\left|X_{3}\right|\left|X_{4}\right|}{p}+\theta \sqrt{\left|X_{1}\right|\left|X_{2}\right|\left|X_{3}\right|\left|X_{4}\right| p}, \text { where }|\theta| \leq 1+o(1)
$$

An almost immediate consequence of this result is the following:
Corollary 1 Suppose $p \geq 3, A \subseteq \mathbb{F}_{p}^{\times},|A| \geq(1+g(p)) p^{3 / 4}$, where $g(p)$ is a certain function such that $g(x)=o(1)$. Then for every $a, b \in \mathbb{F}_{p}^{\times}$we have that

$$
A . A+a * A+b * A=\mathbb{F}_{p} .
$$

To prove this corollary suppose that $\lambda \in \mathbb{F}_{p}$. Let

$$
X_{1}=X_{2}=A \quad \text { and } \quad X_{3}=-\lambda-a * A, X_{4}=-b * A
$$

Then, any solution to $x_{1} x_{2}-x_{3}-x_{4}=0$ corresponds to a solution to

$$
x_{1} x_{2}+a * y_{1}+b * y_{2}=\lambda, y_{1}, y_{2} \in A .
$$

And, applying the above theorem, the fact that $|A| \geq(1+o(1)) p^{3 / 4}$ guarantees that the number of such solutions is positive.

Note that this result is weaker than the $3(A . A)=\mathbb{F}_{p}$ result that Fourier methods give in that it (combinatorial) only works for when $|A| \geq(1+$ $o(1)) p^{3 / 4}$, not $|A|>p^{3 / 4}$. But it is stronger in that if one lets $a, b \in A$ then $A+a * A+b * A \subseteq 3(A . A)$.

