Additive Combinatorics Homework

Ernie Croot

April 8, 2011

1. For a prime $k \geq 3$, consider the set of integers of the form

$$
S=\left\{d_{0}+d_{1} k+\cdots+d_{n} k^{n}: 0 \leq d_{i} \leq k-2\right\}
$$

Can S have k-1-term arithmetic progressions? What about k-term or ($k+1$)-term arithmetic progressions? Prove your answers.
2. Determine the size of the largest set S having the following properties: 1) $S \subseteq\{1,2, \ldots, x\}$; and 2) If $x, y \in S$, then $x+y \notin S$.
3. Suppose that one has x points positioned on the unit circle, such that the minimum distance between any two of these points is at least $(100 x)^{-1}$. Show that for all x sufficiently large, there exists a sector with angle width θ, containing at least $x / 10^{10^{10^{100}}}$ points, such that the following holds: Let M be the number of points in this sector. Then, if we partition the sector into three equal sectors of angle width $\theta / 3$, each of these sectors will contain M_{1}, M_{2}, and M_{3} points, where

$$
M\left(\frac{1}{3}-\frac{1}{10}\right)<M_{1}, M_{2}, M_{3}<M\left(\frac{1}{3}+\frac{1}{10}\right) .
$$

That is, each of the three subsectors contains about the expected number of points. To solve this problem think about Roth's idea for proving sets of positive density have three-term arithmetic progressions, and think about passing to subsectors.

