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This is an expository note not intended for publication

ABSTRACT. We briefly discuss here the Balog-Szemerédi theorem, compare its
different versions and prove, following Gowers, the strongest one — also due to
Gowers.

1. DISCUSSION

For a finite set A of elements of an abelian group and a group element s, by v4(s)
we denote the number of representations of s as a sum of two elements of A:
va(s) =#{(d,d") e Ax A: s=d +d"}.

We write 2A = {a’ + a”: d’,a"” € A}, the set of all elements s with v4(s) > 0.
Our motivation will be clear from the following simple lemma.

Lemma 1. Suppose that |2A| < C|A| with some real C' > 0. Then
(i) there are at least |A|/2 elements s € 2A with v4(s) > |Al/(2C);
(ii) if W is the set of all pairs (a’,a") € Ax A withva(a'+a”") > |A|/(2C), then
\W| > |A|?/(4C) and furthermore there are at most 2C|A| distinct sums of
the form a' 4+ o" with (a’,ad") € W;
(iii) the number of solutions of the equation a; + ay = a3 + a4 in the variables
ai,as, az, a4 € A is at least |A]?/C.

Proof. Write S := {s € 2A: v4(s) > |A|/(2C)}. Then
AP =) wals) =) wals)+ Y wals) <|S|IA|+ [24]|4]/(2C)
s€E2A ses s€2A\S
(the sum over s € S contains |S| summands not exceeding |A|, the sum over
s € 2A\ S contains at most |24| summands not exceeding |A|/(2C)). By the
assumption we have |2A[|A|/(2C) < |AJ?/2 implying |S| > |A|/2, as claimed in (i).
To prove (ii) we notice that
(W[ =2 vals) 2 |5]14]/(20) = |A*/(4C)

ses
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and that the number of distinct sums of the form o’ + o” with (da’,a”) € W is

1
51 (e 240 < ey 2,4 = 2CM

s€2A

Finally, (iii) is established once we observe that the number of solutions of the
equation in question is

S ) 2 (3 e = = e

SE2A

O

The Balog-Szemerédi theorem is an assertion “inverse” to the lemma above. In
fact, it is not true that if A satisfies conditions of the sort (i)—(iii) then A has
the small doubling property: consider, for instance, sets consisting of an arithmetic
progression and a number of “sporadic” elements. Balog and Szemrédi have shown,
however, that if (i)—(iii) hold then there is a large subset Ag C A with small
doubling.

In the light of the discussion above it is not surprising that the assumptions
of the Balog-Szemerédi theorem can be stated in several equivalent forms. More
precisely, consider the following three conditions (depending on positive real pa-
rameters ¢, 9, 7, K, and 7).

C1(e,0): there is a set S C 2A such that |S| > ¢|A| and va(s) > | A| for any
s €S,

C2(7, K): there is a set W C A x A such that |[W| > 7|A|* and the number
of distinct sums o’ + a” with (a’,a”) € W is at most K|A|;

C3(v): the number T'(A) of solutions of the equation a; + ay = az + a4 in the
variables a1, ay, as, ay € A satisfies T(A) > v|A|>.

These conditions are essentially equivalent: we leave it to the reader to verify that
Cl(e, 6) implies C2(d,1/6); furthermore, C2(, K) implies C3(72/K); and finally,
C3(7) implies C1(v/2,7/2). Once equivalence is established we can switch freely
between the conditions. In practice we prefer to use C3(7) which depends on just
one parameter, and from now on we adopt 7'(A) as a standard notation.

It is possible to re-state conditions C1 and C2 so that they will depend on just
one parameter, too. It is also possible to consider sumsets of the form A + B :=
{a +b:a € A, b € B} instead of 24, and indeed the most general form of the
Balog-Szemerédi theorem addresses this situation. We will not discuss this below,
however.

The “original” (pre-Gowers) version of the Balog-Szemerédi theorem is as follows.
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Theorem 1. Let A be a finite non-empty set of elements of an abelian group and
suppose that T(A) > v|A[?, where v > 0 is a real number. Then there exists a
subset Ay C A satisfying |Ao| > c|A| and |2A,| < C|Ap| with positive constants ¢
and C depending only on 7.

For a nicely presented classical proof of Theorem 1 (with the assumptions in the
form C1) we refer the reader to [C04]. The problem with the classical proof is that
it is based on the Szemerédi regularity lemma, hence the dependence of ¢ and C on
~ arising from this proof is very poor; more precisely tower-like, which in practice
means ineffective. In contrast, Gowers was able to find a proof which does not
use the regularity lemma and leads to “good” relation between ¢ and C, on the
one hand, and v on the other hand. His result is also somewhat stronger than the
original Balog-Szemerédi theorem.

Theorem 2 (Gowers, [G98]). Let A be a finite non-empty set of elements of an
abelian group and suppose that T(A) > ~|A]?, where v > 0 is a real number.
Then there exists a subset Ay C A satisfying |Ao| > (72/40)|A| such that for any
ai,as € Ay the number of solutions of the equation

a1 — 0 =21+ T2+ T3+ T4 — Y1 —Y2— Y3 —VYa

in the variables x;,y; € A (i = 1,...,4) is at least 272~0|A|". Consequently, we
have |Ag — Ag| < 228710 A|.

We note that the “consequently part” of the theorem (to which we will never
return again) is almost immediate. There are totally |A|® expressions of the form
1+ - -—y4, and by the first assertion any element of the difference set Ag— Aq “eats
up” at least 2728419| A|7 expressions; thus the number of elements of the difference
set is at most |A[3/(272419)4]7).

It is worth pointing out that the conclusion of Theorem 2 deals with the difference
set Ag — Ag rather than the sumset 24,. However, the cardinalities of the two sets

are known to be tightly related; in particular, by a well-known lemma of Ruzsa
from |Ag — Ag| < C|Ap] it follows that [2Ag] < C?|Ay|.

2. PROOF OF THE (GOWERS-)BALOG-SZEMEREDI THEOREM

Suppose that we are given subsets A;,..., A, C A of cardinality at least §|A|
each, with some 0 > 0. It is easily seen then that the average intersection A; N A,
has at least §%|A| elements. The following lemma shows that, indeed, one can
select a “large” group of subsets so that “almost all” pairs of selected subsets have
intersection of about expected size.
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Lemma 2. Let A be a finite non-empty set of cardinality m = |A| and suppose
that Ay, ..., A, C A satisfy |A;] > 0m (i =1,...,n), where 6 > 0 is a real number.
Then there is a set of indices I C [1,n] such that |I| > dn/2 and

1
#{(0,3) € 1 I3 |4 N 4] < 0.038°m} < |1

Remark. There is the usual trade-off between the constants 0.03, 1/25, and /2 (in
|I| > dn/2); for instance, 0.03 can be replaced by any value, smaller than one. One
can obtain slightly better constants modifying the argument as follows: instead of
a random element a € A consider a random k-tuple a = (ay,...,a;) € A* and
define I, = {i € [1,n]: a1,...,ar € A;}. Indeed, this is the how the argument runs
in Gowers’ original proof.

Proof of Lemma 2. For a € Alet I, = {i € [1,n]: a € A;}; thus i € I, if and only
if a € A;, and

Z|A mA|—Z|I|2>—<Z|]|> <Z|A|> > §%mn?

i,j=1 acA

(showing that the average intersection A; N A; has at least §°m elements).
We prove that one can take I = I, for some a. For this, choose a € A at random.
Then

E|[a|2 =E #{(27]) Za] € [a} = E#{(Z,]) ac Az mAJ}

=Y Plac AinA;} =) mANA4 > 6n*

i,j=1 hj=1
on the other hand,
E4#{(i,j) € I, x I,: |[Ain Aj| < 0.036*m} = i P{i,j € 1,}
\AimAj’fgzol.owm
= Zn: Plac A;NA;} = Xn: m~A; N A;] <0.036%n°.
m~! |Ai2{4:j\1§0.0362 m~! |Ai2{4:j |1§0.0362

Therefore,

E{ 1,2 = 25 #{(i, ) € o Lo |4; 1 4] < 0.030%m} b > Lo*n2,
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and there exists a € A such that

1
|Ia| Z 5 6”,

1
#{(0,7) € L x Lt |A; N Ay < 0.038%m} < o | L[

To make Lemma 2 easier to apply we restate it in a slightly different form.

Lemma 2'. Let A and B be two finite non-empty sets. Write m := |A| and suppose
that to any b € B there corresponds a subset N(b) C A of cardinality |[N(b)| > dm,
where § is a positive real number. Then there exists B' C B with |B'| > §|B|/2
such that

1
H{(V, V) e B x B": INV)NN(®b")| <0.036*m} < 5 |B'|%.
We need a simple graph-theoretic lemma.

Lemma 3. Let G be a graph (possibly, with loops) on the vertex set V' of average
degree d > (1 — \)|V|. Then V contains at least (1 — v/\)|V| vertices of degree
greater than (1 — VA)|V|:

#{v e V: deg(v) > (1 —VAN|V]} > (1 = VN|V].
Proof. If k is the number of vertices v € V' of degree deg(v) > (1 — v/A)|V], then
dv| = > deg(v) + > deg(v)

vi deg(v)<(1—VA)|V] vi deg(v)>(1—VN)|V]
< (L= VOVI(IV] = k) +V]k,
whence
=NV <A =VN(V]=k) +k=(1—- VNV +V Ik
and therefore

k> 01—V

Combining Lemmas 2’ and 3 we get

Lemma 4. Let A and B be as in Lemma 2. Then there exist subsets By C B’ C B
with |By| > 4|B’|/5 > 26| B|/5 and such that for any by € By we have

4
#{¥ € B [N(bo) N N(¥)]| > 0.085m} > = |B|.
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Proof. Find B’ as in Lemma 2’ and construct a graph on the vertex set { N (V') }yep,
joining N(V') and N(b") if [N(b') N N(b")| > 0.036*m. (The case b’ = b" is not
excluded so that each N (') is joined to itself.) The number of non-loop edges of
this graph is more than (‘gl‘) — %,
and applying Lemma 3 with A = 1/25 we conclude that there is a set By of at least
4|B’|/5 elements such that if by € By, then N(by) is adjacent to more than 4|B’|/5

sets N(b') with o € B'. O

the average degree is more than 24|B’|/25,

Proof of the Gowers-Balog-Szemerédi theorem. Write m := |A|. Let v (d) denote
the number of representations of the group element d as d = a; —as with a1, as € A.
We say that d is a popular difference if v, (d) > ym/2, and we let D = {d €
A—A:v,(d) > ~ym/2}, the set of all popular differences.

Consider the graph G on the vertex set A, in which a; and a, are adjacent if and
only if a; — as € D (the case a; = ay not excluded). The average degree of G is

d= % Z deg(a)

a€A

:%Z#{a’eA:a’—aeD}

a€A

:%#{(a,a’)eAxA: a —a€ D}
1
:E ZVE(CZ%

and to estimate the sum at the right we observe that

ym? <ST(A) = > (i d)= > (i(d)*+ ) (wild))
deA—A de(A—A)\D deD
< %fym S v +m Y vi(d) = %fym?’ +m Y vi).
deA-A deD deD

Therefore Y, V4 (d) > ym?/2 whence d > ym/2 and by Lemma 3 as applied with
A =1—7/2, there is a subset B C A such that |B| > (1 — /1 —7/2)m > ym/4
and deg(b) > ym/4 for any b € B. Thus if N(b) denotes the neighborhood of b in
G (including b itself), then |N(b)| > ym/4 (b € B).

We now apply Lemma 4 to the system of sets N(b) C A (b € B) with § = /4
to find two subsets Ag C A’ C B such that

(i) [A'] = (v/4)[Bl/2 = 4*m/32, and | A¢| = 4|A'|/5 = 7*m/40;
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(ii) for any ay € Ay we have #{a’ € A": |N(ag) N N(a')| > 0.03(y/4)*m} >
514
We claim that Ay possesses the property in question. Indeed, fix a1, as € Ag and
notice that

3
#{a' € A': |[N(a;) N N(a')| > 0.03(y/4)*m for i = 1,2} > = |A').

Choose one of these values of a’. For any a € N(a;) N N(a’) both a; — a and
a’ — a are popular differences, yielding at least (ym/2)? representations a; — a’ =

(z1 = y1) — (21 — y1) with
TLYLTLY EA T —yi=a; —a, Ty — 1y =d —a.
The total number of possible values of a is [N(a;) N N(a’)| > 0.03(v/4)*m, leading
to at least
0.03(7/4)*m (ym/2)* = 0.03 - 2754*m3
representations a; — ' = (x; — 1) — (2} — v)). (Notlce that ¢’ and a can be
recovered from any such representation, hence all these representations are pairwise
distinct.) Similarly, there are at least 0.03 - 2754*m3 representations ay — a’ =
(wa—1yo)— (zh—1b) with 2o, o, 25, 15 € A. Combining, we get at least 0.032-2712y8m
distinct representations
ay —ay = (x1 — 1) — (27 —y1) — (22 = y2) — (22 — ¥3)
and each of them determines a’ uniquely. Using all possible a’ we get at least
0. 032 2~ 12,}/8m ‘Al‘ > 9~ 28”)/1077’?/

representations, as wanted. U
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