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This is an expository note not intended for publication

Abstract. We briefly discuss here the Balog-Szemerédi theorem, compare its
different versions and prove, following Gowers, the strongest one — also due to
Gowers.

1. Discussion

For a finite set A of elements of an abelian group and a group element s, by νA(s)

we denote the number of representations of s as a sum of two elements of A:

νA(s) = #{(a′, a′′) ∈ A × A : s = a′ + a′′}.
We write 2A = {a′ + a′′ : a′, a′′ ∈ A}, the set of all elements s with νA(s) > 0.

Our motivation will be clear from the following simple lemma.

Lemma 1. Suppose that |2A| ≤ C|A| with some real C > 0. Then

(i) there are at least |A|/2 elements s ∈ 2A with νA(s) ≥ |A|/(2C);

(ii) if W is the set of all pairs (a′, a′′) ∈ A×A with νA(a′+a′′) ≥ |A|/(2C), then

|W | ≥ |A|2/(4C) and furthermore there are at most 2C|A| distinct sums of

the form a′ + a′′ with (a′, a′′) ∈ W ;

(iii) the number of solutions of the equation a1 + a2 = a3 + a4 in the variables

a1, a2, a3, a4 ∈ A is at least |A|3/C.

Proof. Write S := {s ∈ 2A : νA(s) ≥ |A|/(2C)}. Then

|A|2 =
∑

s∈2A

νA(s) =
∑

s∈S

νA(s) +
∑

s∈2A\S
νA(s) ≤ |S||A|+ |2A||A|/(2C)

(the sum over s ∈ S contains |S| summands not exceeding |A|, the sum over

s ∈ 2A \ S contains at most |2A| summands not exceeding |A|/(2C)). By the

assumption we have |2A||A|/(2C) ≤ |A|2/2 implying |S| ≥ |A|/2, as claimed in (i).

To prove (ii) we notice that

|W | =
∑

s∈S

νA(s) ≥ |S||A|/(2C) ≥ |A|2/(4C)
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and that the number of distinct sums of the form a′ + a′′ with (a′, a′′) ∈ W is

|S| ≤ 1

|A|/(2C)

∑

s∈S

νA(s) ≤ 1

|A|/(2C)

∑

s∈2A

νA(s) = 2C|A|.

Finally, (iii) is established once we observe that the number of solutions of the

equation in question is

∑

s∈2A

(νA(s))2 ≥ 1

|2A|
(

∑

s∈2A

νA(s)
)2

=
|A|4
|2A| ≥ |A|3/C.

�

The Balog-Szemerédi theorem is an assertion “inverse” to the lemma above. In

fact, it is not true that if A satisfies conditions of the sort (i)–(iii) then A has

the small doubling property: consider, for instance, sets consisting of an arithmetic

progression and a number of “sporadic” elements. Balog and Szemrédi have shown,

however, that if (i)–(iii) hold then there is a large subset A0 ⊆ A with small

doubling.

In the light of the discussion above it is not surprising that the assumptions

of the Balog-Szemerédi theorem can be stated in several equivalent forms. More

precisely, consider the following three conditions (depending on positive real pa-

rameters ε, δ, τ, K, and γ).

C1(ε, δ): there is a set S ⊆ 2A such that |S| ≥ ε|A| and νA(s) ≥ δ|A| for any

s ∈ S;

C2(τ, K): there is a set W ⊆ A × A such that |W | ≥ τ |A|2 and the number

of distinct sums a′ + a′′ with (a′, a′′) ∈ W is at most K|A|;
C3(γ): the number T (A) of solutions of the equation a1 + a2 = a3 + a4 in the

variables a1, a2, a3, a4 ∈ A satisfies T (A) ≥ γ|A|3.
These conditions are essentially equivalent: we leave it to the reader to verify that

C1(ε, δ) implies C2(εδ, 1/δ); furthermore, C2(τ, K) implies C3(τ 2/K); and finally,

C3(γ) implies C1(γ/2, γ/2). Once equivalence is established we can switch freely

between the conditions. In practice we prefer to use C3(γ) which depends on just

one parameter, and from now on we adopt T (A) as a standard notation.

It is possible to re-state conditions C1 and C2 so that they will depend on just

one parameter, too. It is also possible to consider sumsets of the form A + B :=

{a + b : a ∈ A, b ∈ B} instead of 2A, and indeed the most general form of the

Balog-Szemerédi theorem addresses this situation. We will not discuss this below,

however.

The “original” (pre-Gowers) version of the Balog-Szemerédi theorem is as follows.
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Theorem 1. Let A be a finite non-empty set of elements of an abelian group and

suppose that T (A) ≥ γ|A|3, where γ > 0 is a real number. Then there exists a

subset A0 ⊆ A satisfying |A0| ≥ c|A| and |2A0| ≤ C|A0| with positive constants c

and C depending only on γ.

For a nicely presented classical proof of Theorem 1 (with the assumptions in the

form C1) we refer the reader to [C04]. The problem with the classical proof is that

it is based on the Szemerédi regularity lemma, hence the dependence of c and C on

γ arising from this proof is very poor; more precisely tower-like, which in practice

means ineffective. In contrast, Gowers was able to find a proof which does not

use the regularity lemma and leads to “good” relation between c and C, on the

one hand, and γ on the other hand. His result is also somewhat stronger than the

original Balog-Szemerédi theorem.

Theorem 2 (Gowers, [G98]). Let A be a finite non-empty set of elements of an

abelian group and suppose that T (A) ≥ γ|A|3, where γ > 0 is a real number.

Then there exists a subset A0 ⊆ A satisfying |A0| ≥ (γ2/40)|A| such that for any

a1, a2 ∈ A0 the number of solutions of the equation

a1 − a2 = x1 + x2 + x3 + x4 − y1 − y2 − y3 − y4

in the variables xi, yi ∈ A (i = 1, . . . , 4) is at least 2−28γ10|A|7. Consequently, we

have |A0 − A0| < 228γ−10|A|.

We note that the “consequently part” of the theorem (to which we will never

return again) is almost immediate. There are totally |A|8 expressions of the form

x1+· · ·−y4, and by the first assertion any element of the difference set A0−A0 “eats

up” at least 2−28γ10|A|7 expressions; thus the number of elements of the difference

set is at most |A|8/(2−28γ10|A|7).
It is worth pointing out that the conclusion of Theorem 2 deals with the difference

set A0 −A0 rather than the sumset 2A0. However, the cardinalities of the two sets

are known to be tightly related; in particular, by a well-known lemma of Ruzsa

from |A0 − A0| < C|A0| it follows that |2A0| < C2|A0|.

2. Proof of the (Gowers-)Balog-Szemerédi theorem

Suppose that we are given subsets A1, . . . , An ⊆ A of cardinality at least δ|A|
each, with some δ > 0. It is easily seen then that the average intersection Ai ∩ Aj

has at least δ2|A| elements. The following lemma shows that, indeed, one can

select a “large” group of subsets so that “almost all” pairs of selected subsets have

intersection of about expected size.
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Lemma 2. Let A be a finite non-empty set of cardinality m = |A| and suppose

that A1, . . . , An ⊆ A satisfy |Ai| ≥ δm (i = 1, . . . , n), where δ > 0 is a real number.

Then there is a set of indices I ⊆ [1, n] such that |I| ≥ δn/2 and

#{(i, j) ∈ I × I : |Ai ∩ Aj | ≤ 0.03δ2m} <
1

25
|I|2.

Remark. There is the usual trade-off between the constants 0.03, 1/25, and δ/2 (in

|I| ≥ δn/2); for instance, 0.03 can be replaced by any value, smaller than one. One

can obtain slightly better constants modifying the argument as follows: instead of

a random element a ∈ A consider a random k-tuple a = (a1, . . . , ak) ∈ Ak and

define Ia = {i ∈ [1, n] : a1, . . . , ak ∈ Ai}. Indeed, this is the how the argument runs

in Gowers’ original proof.

Proof of Lemma 2. For a ∈ A let Ia = {i ∈ [1, n] : a ∈ Ai}; thus i ∈ Ia if and only

if a ∈ Ai, and

n
∑

i,j=1

|Ai ∩ Aj | =
∑

a∈A

|Ia|2 ≥
1

m

(

∑

a∈A

|Ia|
)2

=
1

m

(

n
∑

i=1

|Ai|
)2

≥ δ2mn2

(showing that the average intersection Ai ∩ Aj has at least δ2m elements).

We prove that one can take I = Ia for some a. For this, choose a ∈ A at random.

Then

E|Ia|2 = E #{(i, j) : i, j ∈ Ia} = E#{(i, j) : a ∈ Ai ∩ Aj}

=

n
∑

i,j=1

P{a ∈ Ai ∩ Aj} =

n
∑

i,j=1

m−1|Ai ∩ Aj | ≥ δ2n2;

on the other hand,

E#{(i, j) ∈ Ia × Ia : |Ai ∩ Aj| ≤ 0.03δ2m} =

n
∑

i,j=1
|Ai∩Aj |≤0.03δ2m

P{i, j ∈ Ia}

=

n
∑

i,j=1
m−1|Ai∩Aj |≤0.03δ2

P{a ∈ Ai ∩ Aj} =

n
∑

i,j=1
m−1|Ai∩Aj |≤0.03δ2

m−1|Ai ∩ Aj | ≤ 0.03δ2n2.

Therefore,

E

{

|Ia|2 − 25 #{(i, j) ∈ Ia × Ia : |Ai ∩ Aj| ≤ 0.03δ2m}
}

≥ 1
4
δ2n2,
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and there exists a ∈ A such that

|Ia| ≥
1

2
δn,

#{(i, j) ∈ Ia × Ia : |Ai ∩ Aj | ≤ 0.03δ2m} <
1

25
|Ia|2.

�

To make Lemma 2 easier to apply we restate it in a slightly different form.

Lemma 2′. Let A and B be two finite non-empty sets. Write m := |A| and suppose

that to any b ∈ B there corresponds a subset N(b) ⊆ A of cardinality |N(b)| ≥ δm,

where δ is a positive real number. Then there exists B′ ⊆ B with |B′| ≥ δ|B|/2

such that

#{(b′, b′′) ∈ B′ × B′ : |N(b′) ∩ N(b′′)| ≤ 0.03δ2m} <
1

25
|B′|2.

We need a simple graph-theoretic lemma.

Lemma 3. Let G be a graph (possibly, with loops) on the vertex set V of average

degree d̄ ≥ (1 − λ)|V |. Then V contains at least (1 −
√

λ)|V | vertices of degree

greater than (1 −
√

λ)|V |:
#{v ∈ V : deg(v) > (1 −

√
λ)|V |} ≥ (1 −

√
λ)|V |.

Proof. If k is the number of vertices v ∈ V of degree deg(v) > (1 −
√

λ)|V |, then

d̄|V | =
∑

v : deg(v)≤(1−
√

λ)|V |

deg(v) +
∑

v : deg(v)>(1−
√

λ)|V |

deg(v)

≤ (1 −
√

λ)|V |(|V | − k) + |V |k,

whence

(1 − λ)|V | ≤ (1 −
√

λ)(|V | − k) + k = (1 −
√

λ)|V | +
√

λk

and therefore

k ≥ (1 −
√

λ)|V |.
�

Combining Lemmas 2′ and 3 we get

Lemma 4. Let A and B be as in Lemma 2′. Then there exist subsets B0 ⊆ B′ ⊆ B

with |B0| ≥ 4|B′|/5 > 2δ|B|/5 and such that for any b0 ∈ B0 we have

#{b′ ∈ B′ : |N(b0) ∩ N(b′)| ≥ 0.03δ2m} >
4

5
|B′|.
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Proof. Find B′ as in Lemma 2′ and construct a graph on the vertex set {N(b′)}b′∈B′ ,

joining N(b′) and N(b′′) if |N(b′) ∩ N(b′′)| ≥ 0.03δ2m. (The case b′ = b′′ is not

excluded so that each N(b′) is joined to itself.) The number of non-loop edges of

this graph is more than
(|B′|

2

)

− |B′|2
50

, the average degree is more than 24|B′|/25,

and applying Lemma 3 with λ = 1/25 we conclude that there is a set B0 of at least

4|B′|/5 elements such that if b0 ∈ B0, then N(b0) is adjacent to more than 4|B′|/5

sets N(b′) with b′ ∈ B′. �

Proof of the Gowers-Balog-Szemerédi theorem. Write m := |A|. Let ν−
A (d) denote

the number of representations of the group element d as d = a1−a2 with a1, a2 ∈ A.

We say that d is a popular difference if ν−
A (d) ≥ γm/2, and we let D := {d ∈

A − A : ν−
A (d) ≥ γm/2}, the set of all popular differences.

Consider the graph G on the vertex set A, in which a1 and a2 are adjacent if and

only if a1 − a2 ∈ D (the case a1 = a2 not excluded). The average degree of G is

d̄ =
1

m

∑

a∈A

deg(a)

=
1

m

∑

a∈A

#{a′ ∈ A : a′ − a ∈ D}

=
1

m
#{(a, a′) ∈ A × A : a′ − a ∈ D}

=
1

m

∑

d∈D

ν−
A (d),

and to estimate the sum at the right we observe that

γm3 ≤ T (A) =
∑

d∈A−A

(ν−
A (d))2 =

∑

d∈(A−A)\D
(ν−

A (d))2 +
∑

d∈D

(ν−
A (d))2

≤ 1

2
γm

∑

d∈A−A

ν−
A (d) + m

∑

d∈D

ν−
A (d) =

1

2
γm3 + m

∑

d∈D

ν−
A (d).

Therefore
∑

d∈D ν−
A (d) ≥ γm2/2 whence d̄ ≥ γm/2 and by Lemma 3 as applied with

λ = 1 − γ/2, there is a subset B ⊆ A such that |B| ≥ (1 −
√

1 − γ/2)m > γm/4

and deg(b) > γm/4 for any b ∈ B. Thus if N(b) denotes the neighborhood of b in

G (including b itself), then |N(b)| > γm/4 (b ∈ B).

We now apply Lemma 4 to the system of sets N(b) ⊆ A (b ∈ B) with δ = γ/4

to find two subsets A0 ⊆ A′ ⊆ B such that

(i) |A′| ≥ (γ/4)|B|/2 ≥ γ2m/32, and |A0| ≥ 4|A′|/5 ≥ γ2m/40;
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(ii) for any a0 ∈ A0 we have #{a′ ∈ A′ : |N(a0) ∩ N(a′)| ≥ 0.03(γ/4)2m} >
4
5
|A′|.

We claim that A0 possesses the property in question. Indeed, fix a1, a2 ∈ A0 and

notice that

#{a′ ∈ A′ : |N(ai) ∩ N(a′)| ≥ 0.03(γ/4)2m for i = 1, 2} >
3

5
|A′|.

Choose one of these values of a′. For any a ∈ N(a1) ∩ N(a′) both a1 − a and

a′ − a are popular differences, yielding at least (γm/2)2 representations a1 − a′ =

(x1 − y1) − (x′
1 − y′

1) with

x1, y1, x
′
1, y

′
1 ∈ A, x1 − y1 = a1 − a, x′

1 − y′
1 = a′ − a.

The total number of possible values of a is |N(a1)∩N(a′)| ≥ 0.03(γ/4)2m, leading

to at least

0.03(γ/4)2m (γm/2)2 = 0.03 · 2−6γ4m3

representations a1 − a′ = (x1 − y1) − (x′
1 − y′

1). (Notice that a′ and a can be

recovered from any such representation, hence all these representations are pairwise

distinct.) Similarly, there are at least 0.03 · 2−6γ4m3 representations a2 − a′ =

(x2−y2)−(x′
2−y′

2) with x2, y2, x
′
2, y

′
2 ∈ A. Combining, we get at least 0.032·2−12γ8m6

distinct representations

a1 − a2 = (x1 − y1) − (x′
1 − y′

1) − (x2 − y2) − (x′
2 − y′

2)

and each of them determines a′ uniquely. Using all possible a′ we get at least

0.032 · 2−12γ8m6 · 3

5
|A′| > 2−28γ10m7

representations, as wanted. �
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