Notes on the Bourgain-Katz-Tao theorem

February 28, 2011

1 Introduction

NOTE: these notes are taken (and expanded) from two different notes of Ben Green on sum-product inequalities.

The basic Bourgain-Katz-Tao inequality says that for every $\varepsilon>0$ there exists $\delta>0$ such that if $A \subseteq \mathbb{F}_{p}$ satisfies

$$
p^{\varepsilon}<|A|<p^{1-\varepsilon},
$$

then

$$
\max (|A+A|,|A . A|)>|A|^{1+\varepsilon} .
$$

Since the time this theorem first appeared many strengthenings have appeared in the literature; for instance, Bourgain, Glibichuk and Konyagin have shown that the lower bound of p^{ε} on $|A|$ can be replaced with just $|A| \geq 2$.

In this note I will not give the original proof, but will instead give a proof that combines some results of Konyagin with a certain proposition appearing in the Bourgain-Katz-Tao paper to get a relatively short proof.

2 The proof

The proof will amount to combining together the following two lemmas, the first one due to Konyagin, and the second one due to Bourgain, Katz and Tao:

Proposition 1 Suppose that $B \subseteq \mathbb{F}_{p}$. Then,
$\left|3 B^{2}-3 B^{2}\right|=|B \cdot B+B \cdot B+B \cdot B-B \cdot B-B \cdot B-B \cdot B| \geq \frac{1}{2} \min \left(|B|^{2}, p\right)$.
Proposition 2 Suppose that $A \subseteq \mathbb{F}_{p}$ and that $|A+A|,\left|A^{2}\right| \leq K|A|$. Then, there is some subset $B \subseteq A$ with $|B| \geq K^{-c}|A|$ and $|B . B-B . B| \leq K^{c}|B|$.

Now let us see how these imply the theorem: first, suppose that $\mid A+$ $A\left|,|A . A| \leq|A|^{1+\delta}\right.$, where we will take $\delta>0$ as small as desired in terms of ε in order to produce a contradiction.

Applying Proposition, using $K=|A|^{\delta}$ to obtain a subset $B \subseteq A$ satisfying $|B| \geq|A|^{1-c \delta}$ and

$$
\begin{equation*}
\left|B^{2}-B^{2}\right| \leq K^{c}|B|=|A|^{c \delta}|B| \leq|B|^{1+c \delta /(1-c \delta)} \tag{1}
\end{equation*}
$$

Note that

$$
\left|B^{2}\right| \leq\left|A^{2}\right| \leq|A|^{1+\delta} \leq|B|^{(1+\delta) /(1-c \delta)}
$$

Now we consider two cases: either $|B|>\sqrt{p}$ or else $|B|<\sqrt{p}$.
If $\sqrt{p}<|B| \leq|A|<p^{1-\varepsilon}$, then from Proposition 1 we have that

$$
\left|3 B^{2}-3 B^{2}\right| \geq p / 2 \geq|B|^{1 /(1-\varepsilon)} / 2>|B|^{1+\varepsilon} / 2>|B|^{1+\varepsilon / 2}
$$

for $p>p_{0}(\varepsilon)$ (which we can assume - turns out to be an easy exercise involving Cauchy-Davenport). On the other hand, if $|B|<\sqrt{p}$, then we have

$$
\left|3 B^{2}-3 B^{2}\right| \geq|B|^{2} / 2>|B|^{1+\varepsilon / 2}, \text { for } 0<\varepsilon<1
$$

So either way we get

$$
\left|3 B^{2}-3 B^{2}\right| \geq|B|^{1+\varepsilon / 2} \geq\left|B^{2}\right|^{(1-c \delta)(1+\varepsilon / 2) /(1+\delta)} .
$$

Choosing now $\delta>0$ small enough in terms of $\varepsilon>0$, we can assume that

$$
\left|3 B^{2}-3 B^{2}\right| \geq\left|B^{2}\right|^{1+\varepsilon / 3}
$$

Next we apply Plunnecke-Ruzsa-Petridis to this last inequality as follows: let L satisfy $\left|B^{2}-B^{2}\right|=L\left|B^{2}\right|$. Then, from P-R-P we deduce that

$$
\left|B^{2}\right|^{1+\varepsilon / 3} \leq\left|3 B^{2}-3 B^{2}\right| \leq L^{6}\left|B^{2}\right| .
$$

So, $L \geq\left|B^{2}\right|^{\varepsilon / 18}$, which implies that

$$
\left|B^{2}-B^{2}\right| \geq\left|B^{2}\right|^{1+\varepsilon / 18} \geq|B|^{1+\varepsilon / 18}
$$

This then will contradict (1) for

$$
\frac{c \delta}{1-c \delta}<\frac{\varepsilon}{18} .
$$

And so, for δ this small, we must either have that our assumption $|A+A| \leq$ $|A|^{1+\delta}$ or $|A . A| \leq|A|^{1+\delta}$ is false; in other words, we must have that

$$
\text { either }|A+A| \geq|A|^{1+\varepsilon / 18 c} \text { or }|A \cdot A| \geq|A|^{1+\varepsilon / 18 c}
$$

2.1 Proof of Proposition 1

We begin with a lemma.
Lemma 1 Suppose $B \subseteq \mathbb{F}_{p}$. Then, there exists $x \in \mathbb{F}_{p}^{\times}$such that $|B+x * B| \geq$ $\frac{1}{2} \min \left(|B|^{2}, p\right)$.

Proof of the lemma. Basically we compute an average over additive energy as follows: let

$$
S:=\sum_{\substack{x \in \mathbb{P}_{p} \\ x \neq 0}} E(B, x * B)=\left|\left\{b_{1}, b_{2}, b_{3}, b_{4}, x: b_{1}-b_{2}=x\left(b_{3}-b_{4}\right)\right\}\right| .
$$

For each of the $|B|^{2}(|B|-1)^{2}$ quadruples $\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$ with $b_{1} \neq b_{2}$ and $b_{3} \neq b_{4}$ there is a unique x that satisfies the above. For the remaining $|B|^{2}$ quadruples where $b_{1}=b_{2}$ and $b_{3}=b_{4}$ there are $p-1$ choices for x. So,

$$
|S|=|B|^{2}(|B|-1)^{2}+(p-1)|B|^{2} .
$$

It follows from simple averaging that there exists $x \in \mathbb{F}_{p}^{\times}$such that

$$
E(B, x * B) \leq \frac{|B|^{2}(|B|-1)^{2}}{p-1}+|B|^{2} .
$$

Then, using the fact that for sets B and C we have

$$
|B+C| \geq \frac{|B|^{2}|C|^{2}}{E(B, C)}
$$

it follows that

$$
|B+x * B| \geq \frac{|B|^{4}}{E(B, x * B)} \geq \frac{|B|^{2}}{(|B|-1)^{2} /(p-1)+1}
$$

There are two possibilities to consider: either $|B| \geq \sqrt{p}$, or else $|B|<\sqrt{p}$. For the former case we obtain

$$
|B+x * B| \geq \frac{1}{(1-1 / \sqrt{p})^{2} /(p-1)+1 / p}>p / 2
$$

And for the latter case we have

$$
|B+x * B| \geq \frac{|B|^{2}}{1+1}=|B|^{2} / 2
$$

This completes the proof.
Now we resume the proof of our Proposition: given $y \in \mathbb{F}_{p}^{\times}$we either have that $|B+y * B|=|B|^{2}$ or else there exists $\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \in B \times B \times B \times B$ such that

$$
b_{1}+y b_{4}=b_{3}+y b_{2}
$$

which is true if and only if $y \in(B-B) /(B-B)$.
Suppos that $(B-B) /(B-B) \neq \mathbb{F}_{p}$. We have then that there exists $y \in(B-B) /(B-B)$ such that $y+1 \notin(B-B) /(B-B)$, which then implies that

$$
|B+(y+1) * B|=|B|^{2}
$$

If we write $y=\left(b_{1}-b_{3}\right) /\left(b_{2}-b_{4}\right)$, then we have
$3 B^{2}-3 B^{2} \supseteq\left(b_{2}-b_{4}\right) * A+\left(b_{1}-b_{3}+b_{2}-b_{4}\right) * A \supseteq\left(b_{2}-b_{4}\right) *(A+(y+1) * A)$, which implies $\left|3 B^{2}-3 B^{2}\right| \geq|B+(y+1) * B| \geq|B|^{2}$.

Now suppose that $(B-B) /(B-B)=\mathbb{F}_{p}$. Then, from the Lemma above we deduce that there exists $x \in(B-B) /(B-B)$ such that

$$
|B+x * B| \geq \frac{1}{2} \min \left(|B|^{2}, p\right)
$$

Proceeding much as before, we deduce that

$$
3 B^{2}-3 B^{2} \supseteq 2 B^{2}-2 B^{2} \supseteq\left(b_{2}-b_{4}\right)(B+x * B)
$$

which implies

$$
\left|3 B^{2}-3 B^{2}\right| \geq|B+x * B| \geq \frac{1}{2} \min \left(|B|^{2}, p\right)
$$

2.2 Proof of Proposition 2

let $N=|A|$. For sets $C, D \subseteq G$ (our additive group), we shall adopt the simplifying notation $|C| \lesssim|D|$ to mean $|C| \leq c_{1} K^{c_{2}}|D|$, where $c_{1}, c_{2}>0$, and where K is as in the hypotheses of the proposition. Also, $|C| \gtrsim|D|$ will have the analogous meaning.

We will require the following version of the Balog-Szemeredi-Gowers Theorem.

Theorem 1 Suppose that B is a subset of an additive group G, where $|B|=$ N and $E(B, B) \geq N^{3} / K$. Then, there exists $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \gtrsim N$, such that for every pair $b_{1}, b_{2} \in B$ we have that there $\gtrsim N^{7}$ eight-tuples $\left(a_{1}, \ldots, a_{8}\right) \in A \times \cdots \times A$ such that

$$
b_{1}-b_{2}=\left(a_{1}-a_{2}\right)+\left(a_{3}-a_{4}\right)+\left(a_{5}-a_{6}\right)+\left(a_{7}-a_{8}\right) .
$$

We also will require Plunnecke-Ruzsa-Petridis:
Theorem 2 Suppose that $|C+C| \leq K|C|$. Then, $|k C-\ell C| \leq K^{k+\ell}|C|$. The same conclusion holds if we instead assume $|C-C| \leq K|C|$.

And now we resume the proof of the Proposition: we begin by showing that if $|A . A| \lesssim N$ and $|A+A| \lesssim N$, then there exists a subset $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \gtrsim N$ such that for any integers $k, \ell \geq 1$ we have that

$$
\left|\left(A^{\prime}-A^{\prime}\right) A^{k} / A^{\ell}\right| \lesssim N
$$

(Such a result would put us "in the ballpark" of proving the Proposition, and should give us confidence that it can in fact be proved.) To see that such a set A^{\prime} exists, we begin by noting that $|A+A| \lesssim N$ implies that $E(A, A) \gtrsim N^{3}$; and then, Theorem 1 above tells us that for any pair $\left(a^{\prime}, a^{\prime \prime}\right) \in A^{\prime} \times A^{\prime}$ we have that the equation

$$
a^{\prime}-a^{\prime \prime}=a_{1}-a_{2}+a_{3}-a_{4}+a_{5}-a_{6}+a_{7}-a_{8}
$$

has $\gtrsim N^{7}$ solutions with $a_{1}, \ldots, a_{8} \in A$. And now if we multiply both sides by an arbitrary element $c \in A^{k} / A^{\ell}$, we get

$$
c\left(a^{\prime}-a^{\prime \prime}\right)=c a_{1}-c a_{2}+\cdots+c a_{7}-c a_{8} .
$$

The right-hand-side here can be written in $\gtrsim N^{7}$ ways with the $c a_{i}$'s elements of A^{k+1} / A^{ℓ}. Thus, each element of $\left(A^{\prime}-A^{\prime}\right) A^{k} / A^{\ell}$ has $\gtrsim N^{7}$ representations as a sum-and-difference of 8 elements of A^{k+1} / A^{ℓ}. Since by Plunnecke-RuzsaPetridis (multiplicative analogue) we have that $\left|A^{k+1} / A^{\ell}\right| \lesssim N$, it follows that

$$
N^{7}\left|\left(A^{\prime}-A^{\prime}\right) A^{k} / A^{\ell}\right| \lesssim \# \text { possible } 8-\text { tuples }\left(c a_{1}, \ldots, c a_{8}\right) \leq N^{8}
$$

as claimed.
Next, we apply Theorem 1 again, this time a multiplicative analogue: we let $A^{\prime \prime} \subseteq A^{\prime}$ such that for any pair $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}$ we have that the equation

$$
a_{1}^{\prime \prime} / a_{2}^{\prime \prime}=a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} / a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime}
$$

has $\gtrsim N^{7}$ solutions with $a_{1}^{\prime}, \ldots, a_{8}^{\prime} \in A^{\prime}$.
Suppose that $a_{3}^{\prime \prime}, a_{4}^{\prime \prime}$ is another pair of elements in $A^{\prime \prime}$ (possibly the same as $\left.a_{1}^{\prime \prime}, a_{2}^{\prime \prime}\right)$ and note that

$$
a_{1}^{\prime \prime} a_{4}^{\prime \prime}-a_{2}^{\prime \prime} a_{3}^{\prime \prime}=\frac{a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} a_{2}^{\prime \prime} a_{4}^{\prime \prime}-a_{3}^{\prime \prime} a_{2}^{\prime \prime} a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime}}{a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime}}
$$

The idea now is to write the right-hand-side as a sum of six elements of $\left(A^{\prime}-A^{\prime}\right) A^{k} / A^{\ell}$ for $k=5$ and $\ell=4$, and then to count solutions to

$$
\begin{equation*}
a_{1}^{\prime \prime} a_{4}^{\prime \prime}-a_{2}^{\prime \prime} a_{3}^{\prime \prime}=x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} . \tag{2}
\end{equation*}
$$

in much the same way as is used to prove Theorem 1. The magic identities to produce these x_{i} 's are given as follows: let $P:=a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime}$, and then let

$$
\begin{aligned}
x_{1} & =a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} a_{2}^{\prime \prime}\left(a_{4}^{\prime \prime}-a_{8}^{\prime}\right) / P \\
x_{2} & =a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime}\left(a_{2}^{\prime \prime}-a_{7}^{\prime}\right) a_{8}^{\prime} / P \\
x_{3} & =a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime}\left(a_{4}^{\prime}-a_{6}^{\prime}\right) a_{7}^{\prime} a_{8}^{\prime} / P \\
x_{4} & =a_{1}^{\prime} a_{2}^{\prime}\left(a_{3}^{\prime}-a_{5}^{\prime}\right) a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime} / P \\
x_{5} & =a_{1}^{\prime}\left(a_{2}^{\prime}-a_{3}^{\prime \prime}\right) a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime} / P \\
x_{6} & =\left(a_{1}^{\prime}-a_{2}^{\prime \prime}\right) a_{3}^{\prime \prime} a_{5}^{\prime} a_{6}^{\prime} a_{7}^{\prime} a_{8}^{\prime} / P .
\end{aligned}
$$

Now, one can check that for fixed $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, a_{3}^{\prime \prime}$ and $a_{4}^{\prime \prime}$, the obvious mapping

$$
\varphi:\left(x_{1}, \ldots, x_{6}\right) \rightarrow\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime} / a_{5}^{\prime}, a_{4}^{\prime} / a_{6}^{\prime}, a_{7}^{\prime}, a_{8}^{\prime}\right)
$$

(determined by solving for these parameters in terms of the $x_{i}{ }^{\prime}$'s) is injective. Basically, the map is defined as follows: note that for fixed $a_{1}^{\prime \prime}, a_{2}^{\prime \prime}, a_{3}^{\prime \prime}, a_{4}^{\prime \prime}$ we have that x_{6} determines a_{1}^{\prime} uniquely. And then if one knows x_{5}, one quickly obtains a_{2}^{\prime}. Then, knowledge of $a_{1}^{\prime}, a_{2}^{\prime}, x_{5}, x_{6}, x_{4}$ determines $a_{3}^{\prime} / a_{5}^{\prime}$. Also note that knowledge of x_{1} determines a_{8}^{\prime}, since $a_{1}^{\prime} a_{2}^{\prime} a_{3}^{\prime} a_{4}^{\prime} / P=a_{1}^{\prime \prime} / a_{2}^{\prime \prime}$, and since we are given this ratio. The other variables can be obtained in a similar manner.

So, the mapping

$$
\psi:\left(a_{1}^{\prime}, \ldots, a_{8}^{\prime}\right) \rightarrow\left(x_{1}, \ldots, x_{6}\right)
$$

(given by the definition of the x_{i} 's above) is at worst N^{2}-to- 1 .
What this means is that those $\gtrsim N^{7}$ possibilities for $a_{1}^{\prime}, \ldots, a_{8}^{\prime}$ we had earlier (that determine $\left.a_{1}^{\prime \prime} / a_{2}^{\prime \prime}\right)$ determine $\gtrsim N^{7} / N^{2}=N^{5}$ sequences $\left(x_{1}, \ldots, x_{6}\right)$. In other words, for each 4-tuple $\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}, x_{4}^{\prime \prime}\right) \in A^{\prime \prime} \times A^{\prime \prime} \times A^{\prime \prime} \times A^{\prime \prime}$ there are $\gtrsim N^{5}$ sequences $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \in\left(A^{\prime}-A^{\prime}\right) A^{5} / A^{4}$ satisfying (2). It follows that
$N^{5}\left|A^{\prime \prime} A^{\prime \prime}-A^{\prime \prime} A^{\prime \prime}\right| \lesssim$ \# possible 6 - tuples $x_{1}, \ldots, x_{6} \in\left(A^{\prime}-A^{\prime}\right) A^{5} / A^{4} \lesssim N^{6}$,
which proves the Proposition.

