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1 Introduction

NOTE: these notes are taken (and expanded) from two different notes of Ben
Green on sum-product inequalities.

The basic Bourgain-Katz-Tao inequality says that for every ε > 0 there
exists δ > 0 such that if A ⊆ Fp satisfies

pε < |A| < p1−ε,

then
max(|A+ A|, |A.A|) > |A|1+ε.

Since the time this theorem first appeared many strengthenings have
appeared in the literature; for instance, Bourgain, Glibichuk and Konyagin
have shown that the lower bound of pε on |A| can be replaced with just
|A| ≥ 2.

In this note I will not give the original proof, but will instead give a proof
that combines some results of Konyagin with a certain proposition appearing
in the Bourgain-Katz-Tao paper to get a relatively short proof.

2 The proof

The proof will amount to combining together the following two lemmas, the
first one due to Konyagin, and the second one due to Bourgain, Katz and
Tao:
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Proposition 1 Suppose that B ⊆ Fp. Then,

|3B2 − 3B2| = |B.B+B.B+B.B−B.B−B.B−B.B| ≥ 1

2
min(|B|2, p).

Proposition 2 Suppose that A ⊆ Fp and that |A + A|, |A2| ≤ K|A|. Then,

there is some subset B ⊆ A with |B| ≥ K−c|A| and |B.B −B.B| ≤ Kc|B|.

Now let us see how these imply the theorem: first, suppose that |A +
A|, |A.A| ≤ |A|1+δ, where we will take δ > 0 as small as desired in terms of
ε in order to produce a contradiction.

Applying Proposition , using K = |A|δ to obtain a subset B ⊆ A satisfy-
ing |B| ≥ |A|1−cδ and

|B2 −B2| ≤ Kc|B| = |A|cδ|B| ≤ |B|1+cδ/(1−cδ). (1)

Note that

|B2| ≤ |A2| ≤ |A|1+δ ≤ |B|(1+δ)/(1−cδ).

Now we consider two cases: either |B| > √
p or else |B| < √

p.
If
√
p < |B| ≤ |A| < p1−ε, then from Proposition 1 we have that

|3B2 − 3B2| ≥ p/2 ≥ |B|1/(1−ε)/2 > |B|1+ε/2 > |B|1+ε/2,

for p > p0(ε) (which we can assume – turns out to be an easy exercise
involving Cauchy-Davenport). On the other hand, if |B| < √

p, then we have

|3B2 − 3B2| ≥ |B|2/2 > |B|1+ε/2, for 0 < ε < 1.

So either way we get

|3B2 − 3B2| ≥ |B|1+ε/2 ≥ |B2|(1−cδ)(1+ε/2)/(1+δ) .

Choosing now δ > 0 small enough in terms of ε > 0, we can assume that

|3B2 − 3B2| ≥ |B2|1+ε/3.

Next we apply Plunnecke-Ruzsa-Petridis to this last inequality as follows:
let L satisfy |B2 −B2| = L|B2|. Then, from P-R-P we deduce that

|B2|1+ε/3 ≤ |3B2 − 3B2| ≤ L6|B2|.
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So, L ≥ |B2|ε/18, which implies that

|B2 −B2| ≥ |B2|1+ε/18 ≥ |B|1+ε/18.

This then will contradict (1) for

cδ

1 − cδ
<

ε

18
.

And so, for δ this small, we must either have that our assumption |A+A| ≤
|A|1+δ or |A.A| ≤ |A|1+δ is false; in other words, we must have that

either |A+ A| ≥ |A|1+ε/18c or |A.A| ≥ |A|1+ε/18c.

2.1 Proof of Proposition 1

We begin with a lemma.

Lemma 1 Suppose B ⊆ Fp. Then, there exists x ∈ F
×

p such that |B+x∗B| ≥
1
2
min(|B|2, p).

Proof of the lemma. Basically we compute an average over additive energy
as follows: let

S :=
∑

x∈Fp

x 6=0

E(B, x ∗B) = |{b1, b2, b3, b4, x : b1 − b2 = x(b3 − b4)}|.

For each of the |B|2(|B| − 1)2 quadruples (b1, b2, b3, b4) with b1 6= b2 and
b3 6= b4 there is a unique x that satisfies the above. For the remaining |B|2
quadruples where b1 = b2 and b3 = b4 there are p− 1 choices for x. So,

|S| = |B|2(|B| − 1)2 + (p− 1)|B|2.

It follows from simple averaging that there exists x ∈ F
×

p such that

E(B, x ∗B) ≤ |B|2(|B| − 1)2

p− 1
+ |B|2.

Then, using the fact that for sets B and C we have

|B + C| ≥ |B|2|C|2
E(B,C)

,
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it follows that

|B + x ∗B| ≥ |B|4
E(B, x ∗B)

≥ |B|2
(|B| − 1)2/(p− 1) + 1

.

There are two possibilities to consider: either |B| ≥ √
p, or else |B| < √

p.
For the former case we obtain

|B + x ∗B| ≥ 1

(1 − 1/
√
p)2/(p− 1) + 1/p

> p/2.

And for the latter case we have

|B + x ∗B| ≥ |B|2
1 + 1

= |B|2/2.

This completes the proof. �

Now we resume the proof of our Proposition: given y ∈ F
×

p we either have
that |B + y ∗B| = |B|2 or else there exists (b1, b2, b3, b4) ∈ B ×B ×B ×B
such that

b1 + yb4 = b3 + yb2,

which is true if and only if y ∈ (B −B)/(B − B).
Suppos that (B − B)/(B − B) 6= Fp. We have then that there exists

y ∈ (B−B)/(B−B) such that y+1 /∈ (B−B)/(B−B), which then implies
that

|B + (y + 1) ∗B| = |B|2.
If we write y = (b1 − b3)/(b2 − b4), then we have

3B2−3B2 ⊇ (b2−b4)∗A+(b1−b3+b2−b4)∗A ⊇ (b2−b4)∗(A+(y+1)∗A),

which implies |3B2 − 3B2| ≥ |B + (y + 1) ∗B| ≥ |B|2.
Now suppose that (B−B)/(B−B) = Fp. Then, from the Lemma above

we deduce that there exists x ∈ (B − B)/(B −B) such that

|B + x ∗B| ≥ 1

2
min(|B|2, p).

Proceeding much as before, we deduce that

3B2 − 3B2 ⊇ 2B2 − 2B2 ⊇ (b2 − b4)(B + x ∗B),

which implies

|3B2 − 3B2| ≥ |B + x ∗B| ≥ 1

2
min(|B|2, p).

�
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2.2 Proof of Proposition 2

let N = |A|. For sets C,D ⊆ G (our additive group), we shall adopt the
simplifying notation |C| . |D| to mean |C| ≤ c1K

c2 |D|, where c1, c2 > 0,
and where K is as in the hypotheses of the proposition. Also, |C| & |D| will
have the analogous meaning.

We will require the following version of the Balog-Szemeredi-Gowers The-
orem.

Theorem 1 Suppose that B is a subset of an additive group G, where |B| =
N and E(B,B) ≥ N3/K. Then, there exists B′ ⊆ B with |B′| & N ,

such that for every pair b1, b2 ∈ B we have that there & N7 eight-tuples

(a1, ..., a8) ∈ A× · · · ×A such that

b1 − b2 = (a1 − a2) + (a3 − a4) + (a5 − a6) + (a7 − a8).

We also will require Plunnecke-Ruzsa-Petridis:

Theorem 2 Suppose that |C + C| ≤ K|C|. Then, |kC − ℓC| ≤ Kk+ℓ|C|.
The same conclusion holds if we instead assume |C − C| ≤ K|C|.

And now we resume the proof of the Proposition: we begin by showing
that if |A.A| . N and |A + A| . N , then there exists a subset A′ ⊆ A with
|A′| & N such that for any integers k, ℓ ≥ 1 we have that

|(A′ − A′)Ak/Aℓ| . N.

(Such a result would put us “in the ballpark” of proving the Proposition, and
should give us confidence that it can in fact be proved.) To see that such a set
A′ exists, we begin by noting that |A+ A| . N implies that E(A,A) & N3;
and then, Theorem 1 above tells us that for any pair (a′, a′′) ∈ A′ × A′ we
have that the equation

a′ − a′′ = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8

has & N7 solutions with a1, ..., a8 ∈ A. And now if we multiply both sides
by an arbitrary element c ∈ Ak/Aℓ, we get

c(a′ − a′′) = ca1 − ca2 + · · ·+ ca7 − ca8.
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The right-hand-side here can be written in & N7 ways with the cai’s elements
of Ak+1/Aℓ. Thus, each element of (A′ −A′)Ak/Aℓ has & N7 representations
as a sum-and-difference of 8 elements of Ak+1/Aℓ. Since by Plunnecke-Ruzsa-
Petridis (multiplicative analogue) we have that |Ak+1/Aℓ| . N , it follows
that

N7|(A′ −A′)Ak/Aℓ| . # possible 8 − tuples (ca1, ..., ca8) ≤ N8,

as claimed.

Next, we apply Theorem 1 again, this time a multiplicative analogue: we
let A′′ ⊆ A′ such that for any pair a′′1, a

′′

2 we have that the equation

a′′1/a
′′

2 = a′1a
′

2a
′

3a
′

4/a
′

5a
′

6a
′

7a
′

8

has & N7 solutions with a′1, ..., a
′

8 ∈ A′.
Suppose that a′′3, a

′′

4 is another pair of elements in A′′ (possibly the same
as a′′1, a

′′

2) and note that

a′′1a
′′

4 − a′′2a
′′

3 =
a′1a

′

2a
′

3a
′

4a
′′

2a
′′

4 − a′′3a
′′

2a
′

5a
′

6a
′

7a
′

8

a′5a
′

6a
′

7a
′

8

The idea now is to write the right-hand-side as a sum of six elements of
(A′ − A′)Ak/Aℓ for k = 5 and ℓ = 4, and then to count solutions to

a′′1a
′′

4 − a′′2a
′′

3 = x1 + x2 + x3 + x4 + x5 + x6. (2)

in much the same way as is used to prove Theorem 1. The magic identities
to produce these xi’s are given as follows: let P := a′5a

′

6a
′

7a
′

8, and then let

x1 = a′1a
′

2a
′

3a
′

4a
′′

2(a
′′

4 − a′8)/P

x2 = a′1a
′

2a
′

3a
′

4(a
′′

2 − a′7)a
′

8/P

x3 = a′1a
′

2a
′

3(a
′

4 − a′6)a
′

7a
′

8/P

x4 = a′1a
′

2(a
′

3 − a′5)a
′

6a
′

7a
′

8/P

x5 = a′1(a
′

2 − a′′3)a
′

5a
′

6a
′

7a
′

8/P

x6 = (a′1 − a′′2)a
′′

3a
′

5a
′

6a
′

7a
′

8/P.

Now, one can check that for fixed a′′1, a
′′

2, a
′′

3 and a′′4, the obvious mapping

ϕ : (x1, ..., x6) → (a′1, a
′

2, a
′

3/a
′

5, a
′

4/a
′

6, a
′

7, a
′

8)
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(determined by solving for these parameters in terms of the xi’s) is injective.
Basically, the map is defined as follows: note that for fixed a′′1, a

′′

2, a
′′

3, a
′′

4 we
have that x6 determines a′1 uniquely. And then if one knows x5, one quickly
obtains a′2. Then, knowledge of a′1, a

′

2, x5, x6, x4 determines a′3/a
′

5. Also note
that knowledge of x1 determines a′8, since a′1a

′

2a
′

3a
′

4/P = a′′1/a
′′

2, and since we
are given this ratio. The other variables can be obtained in a similar manner.

So, the mapping

ψ : (a′1, ..., a
′

8) → (x1, ..., x6)

(given by the definition of the xi’s above) is at worst N2-to-1.
What this means is that those & N7 possibilities for a′1, ..., a

′

8 we had ear-
lier (that determine a′′1/a

′′

2) determine & N7/N2 = N5 sequences (x1, ..., x6).
In other words, for each 4-tuple (x′′1, x

′′

2, x
′′

3, x
′′

4) ∈ A′′ × A′′ × A′′ × A′′ there
are & N5 sequences (x1, x2, x3, x4, x5, x6) ∈ (A′ −A′)A5/A4 satisfying (2). It
follows that

N5|A′′A′′−A′′A′′| . # possible 6−tuples x1, ..., x6 ∈ (A′−A′)A5/A4 . N6,

which proves the Proposition.
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