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1. Introduction

The primary purpose of this note is to help me understand Bourgain’s proof of the
following theorem from [1].

Theorem 1.1. Let N be a prime and suppose that A and B are subsets of ZN of
densities α and β. Then the sumset A + B contains an arithmetic progression of length
at least

exp
(
c(αβ log N)1/3 − c log log N

)
.

Bourgain’s argument is extremely cunning; it proceeds by an in-depth analysis of sets
of Fourier coefficients, introducing several substantial innovations in the process. An-
other purpose of this note is to highlight the following ‘structural’ result that can be
extracted from Bourgain’s paper without much effort. Theorem 1.1 then follows as an
easy consequence.

Theorem 1.2 (Lp-almost-periodicity for convolutions). Let ε > 0 and m ∈ N be two
parameters, and let G be a finite abelian group. Suppose that f, g : G → [0, 1] have
averages Ef = α and Eg = β. Then there is a Bohr set B = B(Γ, ρ) of rank |Γ| �
m2 log(1/ε)/ε2 and radius ρ = cε3/m such that

‖f ∗ g(x + t)− f ∗ g(x)‖L2m(x) 6 ε(αβ)1/2

for each t ∈ B.

The result says that convolutions are somewhat ‘continuous’ objects: one can find lots
of translates that leave f ∗ g virtually unchanged in Lp; furthermore, there is a lot of
structure to the set of translates. For the reader unfamiliar with Bohr sets, we give the
definition and the relevant properties in the next section; the general idea to take away
is that B can be considered a ‘large’ and ‘additively structured’ set.

This note is heavily based on the expository notes [4] of Ben Green, which are well
worth studying, and on conversations with Tom Sanders, whose encouragement I am
extremely grateful for. I should also mention that one of the motivations for putting this
note together in the first place was to contrast it with a non-Fourier-analytic approach
to proving Theorem 1.1 due to Ernie Croot and myself [2].

The note is structured as follows. In the next section we collect together the tools that
we shall need; most of these are now considered standard in additive combinatorics. We
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combine these in Section 3 to establish Theorem 1.2, and in Section 4 we show how to
deduce Theorem 1.1.

2. Fourier analysis, Bohr sets and dissociativity

Throughout, N will denote the order of the group G.

We shall use the basics of Fourier analysis, as can be found in [5, Chapter 4]. Thus, for

a function f : G → C and a character γ ∈ Ĝ—the dual of G—we write

f̂(γ) = Ex∈Gf(x)γ(x).

We then have Fourier inversion

f(x) =
∑
γ∈ bG

f̂(γ)γ(x)

and Parseval’s identity

‖f̂‖l2 = ‖f‖L2 .

We plainly require the notion of a Bohr set. Again the text [5] may be consulted for
more detailed information, including proofs of the statements immediately following the
definition.

Definition 2.1. Let Γ ⊆ Ĝ be a non-empty set of characters and let ρ > 0 be a radius.
Then we say that

B(Γ, ρ) = {t : |γ(t)− 1| 6 ρ for all γ ∈ Γ}
is a Bohr set. We call |Γ| the rank of the Bohr set and ρ the radius.

Bohr sets thus correspond approximately to the notion of orthogonal complements in
vector spaces, but in a setting where there may not be any actual proper subgroups.

Lemma 2.2. Let G = ZN for N a prime and let B be a Bohr set of rank d and radius
ρ. Then

(i) |B| > (ρ/2π)dN and
(ii) B contains an arithmetic progression of length at least (ρ/2π)N1/d.

We shall in fact only require the second conclusion of the lemma, which can be proved
by a simple application of Dirichlet’s box principle, and only then in deducing Theorem
1.1 from Theorem 1.2.

We shall also require the notion of dissociativity—making use of this was a key insight
of Bourgain’s.

Definition 2.3. A subset S ∈ Ĝ is said to be dissociated if∏
γ∈S

γσγ = 1 and σ ∈ {−1, 0, 1}S implies that σ = 0.
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Dissociativity is normally expressed in additive notation,∑
γ∈S

σγγ = 0 implies σ = 0,

from which it is clearer that it represents a type of independence of the characters in
S. A key fact about dissociated sets comes from the following inequality.

Theorem 2.4 (Rudin’s inequality). Suppose that S ⊆ Ĝ is a dissociated set of charac-
ters and let f be a function whose Fourier transform is supported on S. Then for each
p > 2 we have the norm estimate

‖f‖Lp � √
p‖f̂‖l2 .

We shall use the following lemma to find dissociated sets of characters; see [5, Lemma
4.35].

Lemma 2.5 (Cube covering lemma). Let S ⊆ Ĝ and let d > 1 be an integer. Then
there is a partition

S = D1 ∪ · · · ∪Dk ∪R

where each Di is dissociated and has size d, and R is contained in the {−1, 0, 1}-span
of at most d elements in Ĝ.

The condition on R here means that there are d elements η1, . . . , ηd ∈ Ĝ such that each
γ ∈ R can be written as ησ1

1 · · · ησd
d for some σi ∈ {−1, 0, 1}. One can prove this lemma

using the greedy algorithm, extracting dissociated subsets of S of size d one at a time
until it is no longer possible to do so.

3. The main argument

We are now ready to prove Theorem 1.2. In fact, we shall prove a slightly more general
version of the theorem, for it turns out that the only relevant consequence of h = f ∗ g

being a convolution is that ‖ĥ‖l1 is relatively small compared to Eh. This l1-control

on f̂ ∗ g follows from the fact that f̂ ∗ g = f̂ · ĝ, the Cauchy-Schwarz inequality and
Parseval’s identity:

‖f̂ · ĝ‖l1 6 ‖f̂‖l2‖ĝ‖l2 6 (αβ)1/2.

Theorem 3.1 (Lp-almost-periodicity for functions with small ‖̂·‖l1). Let ε > 0 and
m ∈ N be two parameters, and let f : G → C be a function on a finite abelian group.
Then there is a Bohr set B = B(Γ, ρ) of rank |Γ| � m2 log(1/ε)/ε2 and radius ρ = cε3/m
such that

‖f(x + t)− f(x)‖L2m(x) 6 ε‖f̂‖l1 (3.1)

for each t ∈ B.

The rest of this section is devoted to the proof of this theorem. Let us write δ = ‖f‖L1

and κ = ‖f̂‖l1 ; note that δ 6 κ since |f(x)| 6 ‖f̂‖l1 for all x ∈ G by Fourier inversion.
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We begin by partitioning Ĝ according to how each character interacts with f̂ . Let
M ∈ N be a parameter to be chosen later, and write

Ĝ =
M⋃

k=1

Γk ∪ Γsmall

where

Γk = {γ : 2−kδ < |f̂(γ)| 6 2−k+1δ}

and

Γsmall = {γ : |f̂(γ)| 6 2−Mδ}.

Note that |f̂(γ)| 6 ‖f‖L1 = δ for each γ ∈ Ĝ, so this really does partition the set of
characters. The characters in Γsmall should be thought of as contributing to an error
term eventually, whereas we shall get a serious contribution from the characters in the
Γks. This contribution can be isolated further by partitioning out dissociated subsets
of each Γk. Let d be another integer parameter to be chosen later, and apply Lemma
2.5 to Γk to obtain a partition

Γk =

vk⋃
j=1

Γ
(j)
k ∪ Γstruct

k

where each set Γ
(j)
k has size d and each Γstruct

k is contained in the {−1, 0, 1}-span of at

most d elements in Ĝ.

Next we decompose f according to its Fourier expansion: f(x) =
∑

γ f̂(γ)γ(x), which
we write as ∑

γ∈Γsmall

f̂(γ)γ(x) +
M∑

k=1

vk∑
j=1

∑
γ∈Γ

(j)
k

f̂(γ)γ(x) +
M∑

k=1

∑
γ∈Γstruct

k

f̂(γ)γ(x)

= g1(x) + g2(x) + g3(x)

in the indicated way. Note that ĝ1(γ) = f̂(γ) for γ ∈ Γsmall and is 0 otherwise, and
similarly for the other gi. From the point of view of establishing (3.1), g1 and g2 will
constitute error terms in the sense that they contribute very little to the left-hand side,
regardless of the choice of element t ∈ G. It is in dealing with the contribution of g3

that we shall need to be careful in our choice of t, and it is here that the Bohr set of
the conclusion will come into play. Thus we may write

‖f(x + t)− f(x)‖L2m(x) 6 ‖g1(x + t)− g1(x)‖L2m(x) + ‖g2(x + t)− g2(x)‖L2m(x)

+ ‖g3(x + t)− g3(x)‖L2m(x)

6 2‖g1‖L2m + 2‖g2‖L2m + ‖g3(x + t)− g3(x)‖L2m(x) (3.2)

We deal with each of these in turn.
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3.2. The term g1. Our task is to estimate ‖g1‖L2m . This turns out to be straightfor-
ward if we make use of the following (simple) special case of Young’s inequality.

Lemma 3.3. Let k be a positive integer and let f, g : G → C be two functions. Then

‖f ∗ g‖lk 6 ‖f‖l1‖g‖lk .

Thus

‖g1‖2m
L2m = Ex|g1(x)m|2 =

∑
γ

| ĝ1 ∗ · · · ∗ ĝ1︸ ︷︷ ︸
m

(γ)|2

= ‖ĝ1 ∗ · · · ∗ ĝ1‖2
l2 6

(
‖ĝ1‖m−1

l1 ‖ĝ1‖l2
)2

,

the inequality being a repeated application of Young’s inequality.

Now,

‖ĝ1‖l1 =
∑

γ∈Γsmall

|f̂(γ)| 6 κ

since ‖f̂‖l1 = κ, and

‖ĝ1‖2
l2 =

∑
γ∈Γsmall

|f̂(γ)|2 6 2−Mδκ

by definition of Γsmall. We therefore conclude the estimate

‖g1‖L2m 6 2−M/2mκ (3.3)

for this term, since δ 6 κ.

3.4. The term g2. We now estimate ‖g2‖L2m using Rudin’s inequality and the dyadic
partitioning that we performed on the Γk. We have

‖g2‖L2m = ‖
M∑

k=1

vk∑
j=1

∑
γ∈Γ

(j)
k

f̂(γ)γ(x)‖L2m 6
M∑

k=1

vk∑
j=1

‖
∑

γ∈Γ
(j)
k

f̂(γ)γ(x)‖L2m

and, since Γ
(j)
k is dissociated, this is at most an absolute constant times

√
m

M∑
k=1

vk∑
j=1

∑
γ∈Γ

(j)
k

|f̂(γ)|2


1/2

.

But we essentially know the value of f̂(γ) for γ ∈ Γk, using which we can bound this
expression above by

2

√
m

d

M∑
k=1

vk∑
j=1

∑
γ∈Γ

(j)
k

|f̂(γ)| �
√

m

d
κ.

Thus

‖g2‖L2m �
√

m

d
κ. (3.4)
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3.5. The term g3. It remains to define our Bohr set B(Γ, ρ) and estimate ‖g3(x+ t)−
g3(x)‖L2m(x) accordingly. By construction of Γstruct

k , we can find elements ηk,1, . . . , ηk,d ∈
Ĝ for each k such that

Γstruct
k ⊆ Span{−1,0,1}(ηk,1, . . . , ηk,d).

Define

Γ =
M⋃

k=1

{ηk,1, . . . , ηk,d},

a set of at most Md characters, and let ρ > 0 be a parameter to be chosen later. Let t
be in the Bohr set B(Γ, ρ).

Lemma 3.6. Let z1, . . . , zd ∈ C be elements of absolute value 1. Then

|z1 · · · zd − 1| 6 |z1 − 1|+ · · ·+ |zd − 1|.

Proof.

|x1x2 − 1| = |x2(x1 − 1) + (x2 − 1)| 6 |x1 − 1|+ |x2 − 1|. �

Now, any character γ ∈ Γstruct
k has an expression of the form ησ1

k,1 · · · η
σd
k,d for some σj ∈

{−1, 0, 1} and so

|γ(t)− 1| 6 dρ

by the preceeding lemma and the definition of B(Γ, ρ). Hence

‖g3(x + t)− g3(x)‖L2m(x) = ‖
M∑

k=1

∑
γ∈Γstruct

k

f̂(γ)γ(x)(γ(t)− 1)‖L2m(x)

6
M∑

k=1

∑
γ∈Γstruct

k

|f̂(γ)||γ(t)− 1|

6 dρκ. (3.5)

3.7. Combining the estimates. From (3.2), (3.3), (3.4) and (3.5) we obtain the final
estimate

‖f(x + t)− f(x)‖L2m(x) �
(

2−M/2m +

√
m

d
+ dρ

)
‖f̂‖l1 .

The only remaining task is to pick parameters. We want 2−M/2m +
√

m
d

+ dρ to be less
than some small constant times ε, so we pick

M ≈ Cm log(1/ε),

d ≈ Cm/ε2, and

ρ = cε/d = cε3/m.
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4. Finding long arithmetic progressions in A + B

In this section we show how to deduce Theorem 1.1 from Theorem 1.2. We use the
following pigeonholing argument of Bourgain.

Lemma 4.1. Let f : G → [0, 1] and P ⊆ G. Suppose that

Ex max
t∈P

|f(x + t)− f(x)| < Ef.

Then supp(f) = {x : f(x) > 0} contains a translate of P .

Proof. By the pigeonhole principle, there is some element x for which

max
t∈P

|f(x + t)− f(x)| < f(x).

Hence f(x + t) > 0 for each t ∈ P , giving x + P ⊆ supp(f). �

Proof of Theorem 1.1. We are given two sets A and B of densities α and β; let us write
δ = (αβ)1/2. Apply Theorem 1.2 to 1A and 1B with parameters ε and m to get a set Γ of
characters, |Γ| 6 Cm2 log(1/ε)/ε2, and a radius ρ = cε3/m such that for any t ∈ B(Γ, ρ)
we have

‖1A ∗ 1B(x + t)− 1A ∗ 1B(x)‖L2m(x) 6 εδ.

Let P be an arithmetic progression of length k in B, where

k 6 ρN1/|Γ|/2π. (4.1)

Then

Ex max
t∈P

|1A ∗ 1B(x + t)− 1A ∗ 1B(x)| 6 Ex

(∑
t∈P

|1A ∗ 1B(x + t)− 1A ∗ 1B(x)|2m

)1/2m

6

(∑
t∈P

Ex|1A ∗ 1B(x + t)− 1A ∗ 1B(x)|2m

)1/2m

6 k1/2mεδ.

We shall therefore be done if k1/2mε < δ. Let us pick ε = δ/2k1/2m and m ≈ log k. The
only restriction on k comes from (4.1): we can find an arithmetic progression of length
k in A + B provided

k 6
cδ3

log k
exp

(
cδ2 log N

log(1/δ)(log k)2

)
,

which is true provided

k ≈ exp
(
c(δ2 log N)1/3

)
.

(We have assumed that δ is not too small in terms of N here; some slightly messy
calculations would be needed to get a more precise allowed relationship between δ and
N .) �
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