Notes on the second moment method, Erdős multiplication tables

January 25, 2011

1 Erdős multiplication table theorem

Suppose we form the $N \times N$ multiplication table, containing all the N^{2} products $a b$, where $1 \leq a, b \leq N$. Not all these products will be distinct, since for example $a b=b a$; and, for example $2 \cdot 3=3 \times 2=6 \times 1=1 \times 6$. But we might hope that there are enough of them to where these products take up a "positive proportion" of the numbers up to N^{2} as $N \rightarrow \infty$. That is, one might guess that:

Question. Let $m(N)$ denote the number of integers of the form $a b$, where $1 \leq a, b \leq N$. Does $\lim _{N \rightarrow \infty} m(N) / N^{2}$ exist, and is it equal to some non-zero (positive) constant?
P. Erdős showed that the answer is 'no'; that, in fact, $\lim _{N \rightarrow \infty} m(N) / N^{2}=$ 0 . In other words, as N gets bigger and bigger, the set of products $a b$ as above "eat up" a smaller and smaller proportion - tending to 0 , in fact - of the integers up to N^{2}. What was innovative about Erdős's proof was that he did this using probabilistic arguments; and here we will trace through his proof.

2 Markov's inequality and Chebyshev's inequality

The main tools we will need are some elementary estimates in prime number theory, in combination with the following inequality:

Chebyshev's Inequality. Suppose that X is a random variable having finite variance σ^{2} and expected value μ (i.e. $\mathbb{E}(X)=\mu$ and $V(X)=\sigma^{2}$). Then,

$$
\mathbb{P}(|X-\mu| \geq t) \leq \sigma^{2} / t^{2}
$$

Another way to express the conclusion here is:

$$
\mathbb{P}(|X-\mu| \geq t \sigma) \leq 1 / t^{2}
$$

The proof of this inequality relies on another inequality called Markov's inequality, stated as follows:

Markov's Inequality. Suppose that $X \geq 0$ and has expected value $\mu>0$. Then, for $t>0$ we have

$$
\mathbb{P}(X \geq t) \leq \mu / t
$$

2.1 Proof of Markov's inequality

We will prove it in the case where X is a continuous random variable having pdf $f(x)$; the discrete case can be handled similarly.

We begin by letting $1_{[t, \infty)}(x)$ denote the indicator function for the interval $[t, \infty)$, so that the function is 0 if $x<t$, and is 1 if $x \geq t$. Then, we observe that

$$
1_{[t, \infty)}(x) \leq x / t, \text { for } x>0
$$

We have
$\mathbb{P}(X \geq t)=\int_{0}^{\infty} 1_{[t, \infty)}(x) f(x) d x \leq \int_{0}^{\infty} x f(x) / t d x=\frac{\int_{0}^{\infty} x f(x) d x}{t}=\mu / t$, as claimed.

2.2 Proof of Chebyshev's inequality

We first note that if $\sigma^{2}=0$, then with probability 1 we have that $X=\mu$, since X is a continuous r.v. So we may assume $\sigma^{2}>0$.

Given X, let $Y=|X-\mu|^{2}$. Then, $Y \geq 0$ and $\mathbb{E}(Y)=\mathbb{E}\left(|X-\mu|^{2}\right)=$ $\sigma^{2}>0$. It follows that

$$
\mathbb{P}(|X-\mu| \geq t)=\mathbb{P}\left(Y \geq t^{2}\right) \leq \sigma^{2} / t^{2}
$$

where the last equality is a consequence of Markov's inequality.

3 Sums over prime numbers

We will also need the following well-known result in elementary prime number theory, which we will not bother to prove:
Theorem 1 We have that

$$
\sum_{\substack{p \leq x \\ p \text { prime }}} \frac{1}{p}=\log \log x+C+O(1 / \log x)
$$

where C is some constant.
Using the fact that

$$
\sum_{\substack{p^{a} \geq 2, a \geq 2 \\ p \text { prime }}} \frac{1}{p^{a}}=D
$$

for some constant $D>0$, one can easily deduce from the above theorem that Theorem 2 We have that

$$
\sum_{\substack{p^{a} \leq x, a \geq 1 \\ p \text { prime }}} \frac{1}{p^{a}}=\log \log x+E+O(1 / \log x)
$$

for some constant $E>0$.
We will not bother to supply the proof of this.
One more fact we will need is given as follows:

Theorem 3

$$
\sum_{\substack{p^{a}, q^{b} \leq x, a, b \geq 1 \\ p, q \\ \text { prime }}} \frac{1}{p^{a} q^{b}} \leq(\log \log x+E+O(1 / \log x))^{2}
$$

Basically, we get this by squaring out the sum in Theorem 2.

4 The proof

Let $\Omega(n)$ denote the number of prime power divisors of n, and let $\omega(n)$ denote the number of prime divisors of n. So, for example, $\Omega(12)=3$, because 2,4 , and 3 are all the prime powers dividing 12 ; while, $\omega(12)=2$, since 2 and 3 are the only prime divisors of 12 .

It is an easy exercise to check that

$$
\Omega(a b)=\Omega(a)+\Omega(b), \text { for } a, b \geq 1
$$

A common way of expressing $\Omega(n)$ and $\omega(n)$ with sum notation is as follows:

$$
\Omega(n)=\sum_{\substack{p^{a} \mid n \\ p \text { prime }}} 1, \text { and } \omega(n)=\sum_{\substack{p \mid n \\ p \text { prime }}} 1
$$

The proof of Erdős's multiplication table theorem will amount to proving the following theorem.

Theorem 4 For all but at most $o(N)$ of the integers $n \leq N$ we have that
$\log \log N-(\log \log N)^{2 / 3}<\Omega(n)<\log \log N+(\log \log N)^{2 / 3}$.
That is to say: For every $\varepsilon>0$, there exists $N_{0}(\varepsilon)>0$, such that if $N>$ $N_{0}(\varepsilon)$ then (1) holds for at least $(1-\varepsilon) N$ of the integers in $\{1,2, \ldots, N\}$.

Note. We get the same conclusion for the function $\omega(n)$.
Given this theorem, let us see how to prove Erdős's theorem: Basically, an easy consequence of this theorem is that all but at most $o\left(N^{2}\right)$ of the products $a b, 1 \leq a, b \leq N$, have the property that (1) holds for both $n=a$ and $n=b$. Thus, all but at most $o\left(N^{2}\right)$ entries $a b$ in the $N \times N$ multiplication table will satisfy

$$
2 \log \log N-2(\log \log N)^{2 / 3}<\Omega(a b)<2 \log \log N+2(\log \log N)^{2 / 3}
$$

But now how likely is it for a number $n \leq N^{2}$ to satisfy this inequality? Well, note that

$$
\log \log \left(N^{2}\right)=\log (2 \log N)=\log \log N+\log 2
$$

so, Theorem 4 is telling us that only $o\left(N^{2}\right)$ numbers $n \leq N^{2}$ have the property that $\Omega(n)$ is near $2 \log \log N$. What this means is that most pairs (a, b) lead to numbers $a b$ with an atypically large number of prime power divisors, compared to most numbers of size at most N^{2}; and so, there can be only $o\left(N^{2}\right)$ numbers in the table, which proves Erdős's theorem.

4.1 Proof of Theorem 4

It remains, therefore, to prove Theorem 4. The idea is to use some probability: Basically, we let $X \leq N$ be a randomly selected number where every number up to N is chosen with equal probability $1 / N$; and then we let $Y=\Omega(X)$. We have that

$$
\begin{aligned}
\mathbb{E}(Y)=\sum_{x \leq N} \Omega(x) \mathbb{P}(X=x)=\frac{1}{N} \sum_{x \leq N} \sum_{\substack{p^{a} \mid x \\
p \text { prime }}} 1 & =\frac{1}{N} \sum_{\substack{p^{a} \leq N \\
p \text { prime }}} \sum_{\substack{x \leq N \\
p^{a} \mid x}} 1 \\
& =\sum_{\substack{p^{a} \leq N \\
p \text { prime }}} \frac{1}{N}\left\lfloor N / p^{a}\right\rfloor
\end{aligned}
$$

Now, $\left\lfloor N / p^{a}\right\rfloor=N / p^{a}-\delta_{p^{a}}$, where $0 \leq \delta_{p^{a}}<1$; and so, we have that

$$
\mathbb{E}(Y)=\sum_{\substack{p^{a} \leq N \\ p \text { prime }}} \frac{1}{p^{a}}-\frac{1}{N} \sum_{\substack{p^{a} \leq N \\ p \text { prime }}} \delta_{p^{a}} .
$$

This last expression (the factor $1 / N$ and sum multiplied together) clearly is bounded from above by 1 ; and so, $\mathbb{E}(Y)=\log \log N+O(1)$.

To compute the variance of Y, recall that

$$
V(Y)=\mathbb{E}\left(Y^{2}\right)-\mathbb{E}(Y)^{2}=\mathbb{E}\left(Y^{2}\right)-(\log \log N+O(1))^{2}
$$

For our purposes all we need is an upper bound here on $V(Y)$; and that is all we shall bother to prove: We have that

$$
N \mathbb{E}\left(Y^{2}\right)=\sum_{x \leq N}\left(\sum_{\substack{p^{a}\left|x \\ p^{p}\right|}} 1\right)^{2}=\sum_{x \leq N} \sum_{\substack{p^{a}, q^{b} \mid x \\ p, q \text { prime }}} 1=\sum_{\substack{p^{a}, b^{b} \leq N \\ p, q^{\prime} \text { prime }}} \sum_{\substack{x \leq N \\ p^{a}\left|x, q^{b}\right| x}} 1 .
$$

If p and q are distinct, then the number of $x \leq N$ divisible by p^{a} and q^{b} at the same time is just $\left\lfloor N / p^{a} q^{b}\right\rfloor$; on the other hand, if $p=q$ and $a<b$,
then the count is just $\left\lfloor N / p^{b}\right\rfloor$. Let us consider the contribution of this second case (dropping the floors Land \rfloor, since after all we are only interested in an upper bound):

$$
\sum_{\substack{p^{a}, p^{b} \leq N \\ p_{\text {prime, }, ~} \leq b}} \frac{1}{p^{b}} \leq \sum_{\substack{p^{b} \leq N \\ p \text { prime, } b \geq 2}} \frac{b}{p^{b}} \leq \sum_{\substack{p^{b} \leq N \\ p \text { prime, } b \geq 2}} \frac{\log _{2}\left(p^{b}\right)}{p^{b}}=O(1)
$$

The factor b in the numerator here accounts for the possibilities for a. The fact that we get $O(1)$ at the end is basically because those $p^{b}, b \geq 2$ are "quadratically thin" - there are at most $X^{1 / 2}$ such numbers in an interval $[X, 2 X]$ for X large enough.

So, we get that

$$
\mathbb{E}\left(Y^{2}\right) \leq O(1)+\sum_{\substack{p^{a}, q^{b} \leq N \\ p, q \\ \text { prime, } p \neq q}} \frac{1}{p^{a} q^{b}} \leq(\log \log N+O(1))^{2},
$$

by appealing to Theorem 3. It follows that

$$
V(Y) \leq O(\log \log N)
$$

and therefore, by Chebyshev's inequality, we have for any $c>0$ that

$$
\mathbb{P}\left(|Y-\mathbb{E}(Y)| \geq c(\log \log N)^{2 / 3}\right) \leq O\left(c^{-2}(\log \log N)^{-1 / 3}\right)
$$

Since $\mathbb{E}(Y)=\log \log N+O(1)$ it is clear that this implies Theorem 4.

