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1 Lecture 1: Plünnecke’s Inequalities

1.1 Introduction

The object of these notes is to explain a recent proof by Ruzsa of a famous result of Freiman,
some significant modifications of Ruzsa’s proof due to Chang, and all the background material
necessary to understand these arguments.

Freiman’s theorem concerns the structure of sets with small sumset. Let A be a subset of
an abelian group G, and define the sumset A + A to be the set of all pairwise sums a + a′,
where a, a′ are (not necessarily distinct) elements of A. If |A| = n then |A + A| ≥ n, and
equality can occur (for example if A is a subgroup of G). In the other direction we have
|A + A| ≤ n(n + 1)/2, and equality can occur here too, for example when G = Z and
A = {1, 3, 32, . . . , 3n−1}. It is easy to construct similar examples of sets with large sumset,
but rather harder to find examples with A+A small. Let us think more carefully about this
problem in the special case G = Z.

Proposition 1 Let A ⊆ Z have size n. Then |A+ A| ≥ 2n− 1, with equality if and only if
A is an arithmetic progression of length n.

Proof. Write A = {a1, . . . , an} where a1 < a2 < · · · < an. Then we have

a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an,

which amounts to an exhibition of 2n− 1 distinct elements of A+ A. There are other ways
of exhibiting 2n− 1 distinct elements of A+ A; for any 1 ≤ i ≤ n we have

a1 + a1 < · · · < a1 + ai < · · · < ai + ai < · · · < ai + an < · · · < an + an.

If |A + A| = 2n − 1, however, these two orderings must coincide exactly for any i. Thus
in particular we have a2 + ai = a1 + ai+1, and it is easy to see that this forces A to be an
arithmetic progression.

1Trinity College, Cambridge CB2 1TQ. I would be most grateful to receive comments and corrections,
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It is easy to exhibit rather less structured sets for which |A + A| ≤ 4n, say; simply take an
arithmetic progression of length 2n and select any n elements from it. Such sets are still
covered rather economically by an arithmetic progression. There are, however, examples of
sets with small sumset which are not of this form. Let x0, x1, . . . , xd ∈ Z and let m1, . . . ,md

be positive integers. The set

P =

{
x0 +

d∑
j=1

λjxj

∣∣∣∣∣ 0 ≤ λj ≤ mj − 1

}

is said to be a d-dimensional progression. We say that P is proper if |P | = m1m2 . . .md, that
is to say if all of the sums comprising P are distinct. If P is proper then it is easy to confirm
that |P + P | ≤ 2d|P |.

Freiman’s beautiful and deep theorem states that these are essentially the only examples of
subsets of Z with small sumset. The qualitative form of his result is the following.

Theorem 2 (Freiman,[4]) Let A ⊆ Z have cardinality n, and suppose that |A+A| ≤ C|A|.
Then A is contained in a proper d-dimensional progression P of size at most Kn, where d
and K depend only on C.

1.2 Plünnecke’s Inequalities

If k and l are positive integers then we may generalise the concept of a sumset as follows. Let
A be a subset of an abelian group G, and write kA− lA for the set consisting of all elements
of G of the form a1 + · · · + ak − a′1 − · · · − a′l (we will also use such notations as kA + lB,
whose meanings should be obvious).

Theorem 3 (Plünnecke – Ruzsa) Suppose that |A + A| ≤ C|A|. Then |kA − lA| ≤
Ck+l|A| for any k, l.

Plünnecke proved some results which are at least in a similar spirit to this in several papers
and in the monograph [12]. As well as being in German, these papers suffer from a surfeit of
notation and I was unable to make much headway with them. Thus the worker in this area
should be grateful to Ruzsa [15] for rediscovering and simplifying Plünnecke’s work, so that
we can give the polished treatment that follows.

We will deduce Plünnecke’s inequalities from a rather different looking result. Before stating
this we need to make some definitions. A Plünnecke Graph of level h is a directed graphG =
(V (G), E(G)) on some vertex set V0 ∪ V1 ∪ · · · ∪ Vh satisfying the following properties:

(i) All edges in E(G) are of the form (v, v′) where v ∈ Vi and v′ ∈ Vi+1 for some 0 ≤ i ≤ h−1;
(ii) (Forward splitting of paths) Let 0 ≤ i ≤ h − 2 and suppose that u ∈ Vi, v ∈ Vi+1 and
w1, . . . , wk ∈ Vi+2 are such that (u, v) and all of the (v, wj) are edges of G. Then there are
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distinct v1, . . . , vk ∈ Vi+1 such that all of the (u, vj) and the (vj, wj) are edges of G.
(iii) (Backward splitting of paths) Let 0 ≤ i ≤ h − 2 and suppose that u1, . . . , uk ∈ Vi,
v ∈ Vi+1 and w ∈ Vi+2 are such that (v, w) and all of the (uj, v) are edges of G. Then there
are distinct v1, . . . , vk ∈ Vi+1 such that all of the (uj, vj) and the (vj, w) are edges of G.

It goes without saying that the reader is advised to draw a picture representing properties
(ii) and (iii), whereupon their meaning will be clarified enourmously. Now if X ⊆ V0 we write
imi(X) for the set of all vertices in Vi which can be reached by a path starting from some
x ∈ X. The ith magnification ratio of G, Di(G), is defined by

Di(G) = inf
X⊆V0,X 6=∅

|imi(X)|
|X|

.

Proposition 4 (Plünnecke) Let G be a Plünnecke graph of level h ≥ 2. Then we have the
inequalities

D1 ≥ D
1/2
2 ≥ D

1/3
3 ≥ D

1/h
h .

The deduction of Theorem 3 from Proposition 4 is a relatively simple matter which, further-
more, furnishes us with an example of a Plünnecke graph which it may be useful to have in
mind. The key step is the following.

Proposition 5 Let A,B be subsets of an abelian group with |A + hB| ≤ C|A|. Then, for
any h′ ≥ h, there is a set A′ ⊆ A with |A′ + h′B| ≤ Ch′/h|A′|.

Proof. Define a directed graph as follows. Set Vi = A + iB, and join v ∈ Vi to v′ ∈ Vi+1

precisely if v′ − v ∈ B. It is very easy to check that the graph so defined is Plünnecke; we
denote it by Plün(A,B). The hth magnification ratio, Dh, is at most C because

inf
Z⊆A

imh(Z)

|Z|
≤ imh(A)

|A|
≤ |A+ hB|

|A|
≤ C.

It follows from Proposition 4 that Dh′ ≤ Ch′/h for any h′ ≥ h, which is equivalent to the
statement of the proposition.

It follows immediately, taking h = 1, that if |A+A| ≤ C|A| then |kA| ≤ Ck|A| for any k ≥ 2.
To deduce the full strength of Theorem 3 we need a further small lemma.

Lemma 6 Let U, V,W be subsets of an abelian group. Then we have

|U ||V −W | ≤ |U + V ||U +W |.

Proof. For any d ∈ V −W fix v(d) ∈ V , w(d) ∈ W with v(d)−w(d) = d. We define a map
from U × (V −W ) to (U + V )× (U +W ) by sending (u, d) to (u+ v(d), u+w(d)). It is easy
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to check that this is injective.

We may now complete the proof of Theorem 3. Suppose that |A + A| ≤ C|A|, and suppose
without loss of generality that l ≥ k. We may apply Proposition 5 twice to get sets A′′ ⊆
A′ ⊆ A satisfying

|A′ + kA| ≤ Ck|A′|

and

|A′′ + lA| ≤ C l|A′′|.

Lemma 6 then gives

|A′′||kA− lA| ≤ |A′′ + kA||A′′ + lA|
≤ |A′ + kA||A′′ + lA|
≤ Ck+l|A′||A′′|
≤ Ck+l|A||A′′|.

Cancelling the common factor of |A′′| completes the deduction of Theorem 3 from Proposition
4.

We turn now to the proof of Proposition 4. This proposition certainly implies that if Dh ≥ 1
then Di ≥ 1 for all i ≤ h. It turns out that, with rather more effort, one can reverse this
implication. Therefore we begin by proving

Proposition 7 Let G be a Plünnecke graph of level h, and suppose that Dh ≥ 1. Then
Di ≥ 1 for all i.

Proof. Let V (G) = V0 ∪ · · · ∪ Vh. We will show that if Dh ≥ 1 then there are |V0| vertex-
disjoint paths from V0 to Vh, from which it will be immediate that Di ≥ 1 for all i. We will
achieve this by invoking Menger’s Theorem from graph theory (see, for example, [2]). This
theorem tells us that the maximum number of vertex-disjoint paths is exactly equal to the
size of the largest separating set in G, that is to say the smallest number of vertices we can
choose so that every path contains at least one of them.

Let S ⊆ V (G) be a separating set of minimal size m, and suppose in addition that S is as
“bottom heavy” as possible, by which we mean that the sum

h∑
i=0

i|S ∩ Vi|

is minimal. Suppose, for a contradiction, that m < |V0|. Our first claim is that S meets
V1 ∪ · · · ∪ Vh−1. Indeed, suppose that S = X ∪ Y , where X ⊆ V0 and Y ⊆ Vh. S meets every
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path from V0 to Vh and so Y must meet every path starting in V0\X, that is imh(V0\X) ⊆ Y .
However the fact that Dh ≥ 1 implies that |imh(V0 \X)| ≥ |V0 \X|, and hence

|S| = |X|+ |Y | ≥ |X|+ |imh(V0 \X)| ≥ |V0|,

which is contrary to our assumption about m.

Suppose then that S ∩Vk 6= ∅, where 1 ≤ k ≤ h− 1, and write S ∩Vk = {s1, . . . , sq}. Let the
remaining elements of S be sq+1, . . . , sm. Take (as allowed by Menger’s Theorem) m vertex
disjoint paths π1, . . . πm from V0 to Vh, labelled so that si ∈ πi. Observe that sj /∈ πi when
i 6= j. Let ri (resp ti) be the predecessor (resp. successor) of si along πi, so that ri ∈ Vk−1,
ti ∈ Vk+1 and ri, si, ti are consecutive vertices on πi. Now our assumption that S is bottom
heavy means that {r1, . . . , rq, sq+1, . . . , sm} is not a separating set, and hence there is a path
π∗ from V0 to Vh which does not meet this set. π∗ meets Vk−1 in some r∗ /∈ {r1, . . . , rq} and,
since S is a separating set, π∗ meets one of s1, . . . , sq. Without loss of generality assume that
π∗ meets s1, so that (r∗, s1) ∈ E(G). Observe that π∗ does not meet any other si.

Our next claim is that every path in G from {r∗, r1, . . . , rq} to {t1, . . . , tq} passes through
some si, 1 ≤ i ≤ q. For paths from some ri to tj this is quite clear; if such a path passes
through s∗ /∈ {r1, . . . , rq} then we can create a path which misses S by following the segment
of πi up to ri, going to s∗ and tj and then following πj until it meets Vh. In fact the same
argument works for paths from r∗ to tj: here, we follow π∗ to r∗, then go through s∗ and tj
before following πj until it meets Vh. The fact that si /∈ π∗ for i 6= 1 guarantees that this
new path misses S. The claim is proved.

We are very near the end of the proof of Proposition 7, but we have not yet used the fact
that G is Plünnecke. The previous claim implies that the induced graph G′ on vertex set
{r∗, r1, . . . , rq, s1, . . . , sq, t1, . . . , tq} is Plünnecke; in checking the required properties one uses
the Plünneckarity of G to get lots of paths, and these are automatically paths in G′ by the
claim.

If v ∈ Vi is a vertex in a Plünnecke graph then write d+(v) for the number of edges from v
into Vi+1, and d−(v) for the number of edges into Vi−1. An immediate consequence of the
definition of being Plünnecke is that if (u, v) ∈ E(G) and v /∈ Vh then d+(u) ≥ d+(v), and
if u /∈ V0 then d−(u) ≤ d−(v). Look at our Plünnecke graph G′. For any i both (ri, si) and
(si, ti) are edges, and hence ∑

i

d+(ri) ≥
∑
i

d+(si)

and ∑
i

d−(si) ≤
∑
i

d−(ti).
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However it is clear that

d+(r∗) +
∑
i

d+(ri) =
∑
i

d−(si)

and ∑
i

d+(si) =
∑
i

d−(ti).

The only way to reconcile these two sets of inequalities is to conclude that d+(r∗) = 0, but
this is nonsense because we know that (r∗, s1) is an edge of G′. This final contradiction
concludes the proof of Proposition 7.

The deduction of Theorem 3 from Proposition 4 uses a technique which I call the “taking
high powers trick”. The best way to illustrate this is to give the derivation. Another example
of a similar technique occurs in the paper [10] of Katz and Tao on the Kakeya Problem.

If G,G′ are two Plünnecke Graphs of the same level h, with V (G) = V0 ∪ . . . Vh and V (G′) =
V ′0∪· · ·∪V ′h then we define the product graph G×G′ to be the graph on vertex set

⋃
0≤i≤h Vi×

V ′i in which (u, u′) is joined to (v, v′) by an edge if and only if (u, v) ∈ E(G), (u′, v′) ∈ E(G′).
It turns out that G × G′ is also Plünnecke; this is a simple exercise which we leave to the
reader. A little less obvious is the following.

Proposition 8 Let G and G′ be Plünnecke graphs of level h. Then for any 0 ≤ i ≤ h we
have Di(G×G′) = Di(G)×Di(G

′).

Proof. This proposition has the property that one knows that one will have to show that
Di(G×G′) is both no greater and no less than Di(G)×Di(G

′), and that one such inequality
will be trivial. It takes a little thought to realise exactly which one that is, but in fact it is
the former. Suppose, then, that Z ⊆ V0 and Z ′ ⊆ V ′0 are such that

Di(G) =
|imi(Z)|
|Z|

and

Di(G
′) =

|imi(Z
′)|

|Z ′|
.

The observation that imi(Z × Z ′) ⊆ imi(Z)× imi(Z
′) then gives

Di(G×G′) ≤
|imi(Z × Z ′)|
|Z × Z ′|

≤ Di(G)Di(G
′).
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The other direction requires just a little more thought. Let X ⊆ V0 × V ′0 , and write X =⋃
a({a} ×Xa), where the union is over all a for which Xa 6= ∅ (that is, all a for which there

is at least one b with (a, b) ∈ X). If (a, b) ∈ X and if there is a path in G′ from b to d, where
d ∈ V ′i , we say that (a, d) ∈ X1. Observe that

|X1| =

∣∣∣∣∣⋃
a

({a} × imi(Xa))

∣∣∣∣∣ =
∑
a

|imi(Xa)| ≥ Di(G
′)|X|.

Write X1 =
⋃
d(Yd×{d}), where again the union is over all d for which Yd 6= ∅. Observe that

imi(X) =
⋃
d(imi(Yd)× {d}), and hence

|imi(X)| =
∑
d

|imd(Yd)| ≥ Di(G)
∑
d

|Yd| = Di(G)|X1|.

Combining these two inequalities gives |imi(X)| ≥ Di(G)Di(G
′)|X|, and hence we have

indeed that Di(G×G′) ≥ Di(G)×Di(G
′).

Now let B be a set of size n for which all h-fold sums b1 + · · · + bh, bi ∈ B, are distinct.
For example, we could take B = {1, 2h, (2h)2, . . . , (2h)n−1}. We call the graph Plün({0}, B)
an independence graph of level h and size n, and denote it by Ih(n). All such graphs are
isomorphic, and we have Di(Ih(n)) =

(
n+i−1

i

)
for 1 ≤ i ≤ h, this being the number of solutions

to the inequalities 1 ≤ x1 ≤ x2 ≤ · · · ≤ xi ≤ n. Observe that we have

ni

i!
≤ Di(Ih(n)) ≤ ni (1)

To prove Proposition 4 it clearly suffices to show that if G is a Plünnecke graph of level h
then Di ≥ D

i/h
h . This is trivial if Dh = 0, and it follows immediately from Proposition 7 if

Dh = 1. We divide the remaining possibilities into the two cases 0 < Dh < 1 and 1 < Dh.

Case 1. 0 < Dh < 1. Let r be a large integer and let n be the least positive integer such
that

Dh (Gr × Ih(n)) ≥ 1.

Using Proposition 8 and (1) we see that n ≤ (h!D−rh )1/h + 1. Now Proposition 7 implies that
Di(G

r × Ih(n)) ≥ 1 which, by another application of Proposition 8 and (1), tells us that

Dr
in

i ≥ 1.

It follows that

Di ≥
(
(h!D−rh )1/h + 1

)−i/r
,
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and letting r →∞ gives the desired inequality.

Case 2. 1 < Dh. This is very similar to Case 1, except that we use the inverse independence
graph Ih(n)−1. This is the graph obtained by simply reversing Ih(n), and it is obviously
Plünnecke by the symmetry of the definition. It is clear that

Dh(Ih(n)−1) =

(
n+ h− 1

h

)−1

≥ n−h, (2)

and that we have the upper bound

Di(Ih(n)−1) ≤
(
n+h−i−1

h−i

)(
n+h−1

h

) ≤ h!n−i. (3)

Given a positive integer r let n be maximal so that

Dh(G
r × Ih(n)−1) ≥ 1.

Using Proposition 8 and (2) we see that n ≥ D
r/h
h − 1. Now Proposition 7 implies that

Di(G
r × Ih(n)−1) ≥ 1 which, by another application of Proposition 8 and (1), tells us that

Dr
i ≥ ni/h!.

It follows that

Di ≥

(
D
r/h
h − 1

)i/r
(h!)1/r

,

and letting r → ∞ once again gives the desired inequality. This at last concludes the proof
of Proposition 4 and hence, by our earlier work, of Theorem 3.

1.3 Application: Freiman’s theorem for groups with bounded tor-
sion.

Let G be a group in which every element has order at most r, and let A ⊆ G have small
sumset. In this section we prove an analogue of Freiman’s theorem in this setting due to
Ruzsa [13]. It turns out that the bounded torsion enables us to give a proof which is much
simpler than the proof of Freiman’s theorem proper (which will be the subject of our second
and third lectures).

Theorem 9 (Freiman in torsion groups) Let G be a group in which every element has
order at most r, and let A ⊆ G be a set with |A+ A| ≤ C|A|. Then A is contained within a
coset of some subgroup H of G with |H| ≤ C2rC

4|A|.
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Proof. Let |A| = n. The important trick comes straight away. Let X ⊆ 2A−A be maximal
subject to the condition that the sets A + x, x ∈ X, are disjoint. Observe that all the sets
A+x lie in 3A−A which has size at most C4n by Plünnecke. It follows that |X| ≤ C4. Now
if t ∈ 2A−A then A+ t intersects A+ x for some x ∈ X; indeed if t ∈ X this is trivial, and
if t /∈ X then A+ t is certainly not disjoint from

⋃
x∈X(A+x) by maximality. It follows that

t ∈ X + (A− A), that is

2A− A ⊆ X + (A− A).

Adding A to both sides of this inclusion gives

3A− A ⊆ X + (2A− A) ⊆ 2X + (A− A),

and similarly (or by induction)

iA− A ⊆ (i− 1)X + (A− A)

for any i ≥ 2. Let H be the subgroup of G generated by A. It is clear that

H =
⋃
i≥1

(iA− A),

and hence H is contained in I + (A−A) where I is the subgroup generated by X. The fact
that G has bounded torsion implies that everything in I can be written as

n1x1 + · · ·+ n|X|x|X|,

where the xj are the elements of X and 0 ≤ nj < r. It follows that |I| ≤ r|X| ≤ rC
4
. Finally

we have

|H| ≤ |I||A− A| ≤ C2nrC
4

,

which completes the proof. Note that the trick used here, namely a clever choice of something
“maximal”, is very simple yet extremely powerful. We will see it again in Lecture 2.
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2 Lecture 2: Fourier analysis, Chang’s structure theo-

rem and the structure of sumsets

In this lecture we will use the discrete Fourier transform to investigate the structure of
2A− 2A, where A ⊆ ZN has small sumset (throughout the lecture, N will be an odd prime).
This will require us to use a wide range of ideas, the most interesting of which is the concept
of dissociativity. The main result of this lecture is a key step in the proof of Freiman’s
theorem. To state it we need a definition.

Definition 10 Let R ⊆ ZN , and let δ > 0 be a positive real number. Then the Bohr
Neighbourhood B(R, δ) is defined to be the set{

x
∣∣∣ ∥∥∥rx

N

∥∥∥ ≤ δ for all r ∈ R
}
.

The notation ‖x‖ refers to the distance from x to the nearest integer.

The next theorem is the main result of this lecture, and is the only result that we shall carry
through to the third lecture.

Theorem 11 Let A ⊆ ZN have cardinality αN and suppose that |A + A| ≤ C|A|. Then
2A − 2A contains some Bohr neighbourhood B(K, δ), where |K| ≤ 8C log(1/α) and δ ≥
(160C log(1/α))−1.

To set this in context we remark that in applications α will be a power of C−1, so that K
and δ−1 are both of the order C logC.

2.1 The discrete Fourier transform.

Let f, g : ZN → R be any functions. Write ω = e2πi/N and define the Fourier transform of f
by

f̂(r) =
∑
x

f(x)ωrx

for any r ∈ ZN . It is an easy matter to check the following proposition.

Proposition 12 (Fourier formulæ) Let f, g : ZN → R. Then we have

(i) (Inversion) f(x) = N−1
∑

r f̂(r)ω−rx;

(ii) (Parseval)
∑

x f(x)g(x) = N−1
∑

r f̂(r)ĝ(r);

(iii) (Convolution) Define f ∗ g(x) =
∑

y f(y)g(y − x). Then (f ∗ g)̂ (r) = f̂(r)ĝ(r).
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We will frequently take the liberty of identifying sets with their characteristic functions.
Hence if A ⊆ ZN then A(x) = 1 or 0 according as x ∈ A or not. To get used to the notation
and the above proposition, we note some expressions that will be required later. First of all
observe that an immediate consequence of Parseval’s identity is the formula

N−1
∑
r

|Â(r)|2 = |A|. (4)

Secondly, by (ii) and (iii) of the proposition we have

N−1
∑
r

|Â(r)|4 = #
{

(a1, a2, a3, a4) ∈ A4
∣∣ a1 + a2 = a3 + a4

}
. (5)

We call this the number of additive quadruples of A. Thirdly note that A∗A∗A∗A(x) is the
number of quadruples (a1, a2, a3, a4) ∈ A4 with a1+a2−a3−a4 = x, and so A∗A∗A∗A(x) > 0
if and only if x ∈ 2A− 2A. Using (i) and (iii) of the proposition we have that x ∈ 2A− 2A
if and only if ∑

r

|Â(r)|4ω−rx > 0. (6)

2.2 Dissociativity and the Fourier transform.

It is quite likely that I will not have had time to cover the topics of this section fully in the
lecture. The objective is to prove the following theorem of Chang [3]:

Theorem 13 Let ρ, α ∈ [0, 1], let A ⊆ ZN be a set of size αN and let R ⊆ ZN be the
set of all r for which |Â(r)| ≥ ρ|A|. Then R is contained in a cube of dimension at most
2ρ−2 log(1/α).

(If Λ = {λ1, . . . , λk} is a subset of an abelian group then write Λ for the set of everything of
the form

∑
j εjλj where εj ∈ {−1, 0, 1}. We call Λ the cube spanned by Λ, and deem k to be

its dimension.)

The point of Theorem 13 is that the “large spectrum” of A, that is the set of points at
which Â is large, is very highly structured. Observe that Parseval’s identity gives only the
inequality |R| ≤ ρ−2α−1, which is much weaker than Chang’s theorem for small α.

We say that a set Λ = (λj)
k
j=1 ⊆ ZN is dissociated if the only solution to∑

j

εjλj = 0

with εj ∈ {−1, 0, 1} is the trivial one in which εj = 0 for all j.
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Suppose in what follows that Λ is a dissociated set. We will consider cosine polynomials of
the form

f(x) =
k∑
j=1

cj cos

(
2πλjx

N
+ βj

)
(7)

with frequencies in Λ. Here cj ∈ R and βj ∈ T for j = 1, . . . , k. Our objective is to show that
such polynomials behave rather like sums of independent random variables, and to derive
a combinatorial consequence of this fact. We shall establish this behaviour by remodelling
a classical technique of Bernstein which is nearly 80 years old. First of all we isolate three
simple lemmas from the proof.

Lemma 14 Let t be any real number and suppose that y is a real number with |y| ≤ 1. Then
we have

ety ≤ cosh(t) + y sinh(t).

Proof. Observe that the function g(x) = etx is convex on [−1, 1], having non-negative
derivative. It follows that

g(y) ≤
(

1− y
2

)
g(−1) +

(
1 + y

2

)
g(1).

The result follows immediately.

Lemma 15 Let u be any real number. Then we have the inequality

cosh(u) ≤ eu
2/2.

Proof. This follows by comparing the powers series of the two sides term by term.

The following is nothing more than Parseval’s identity for cosine polynomials.

Lemma 16 Let f be a cosine polynomial of the form (7). Then we have
∑
f(x)2 = N

2

∑
j c

2
j .

Proof. By writing each cosine cos
(

2πλjx

N
+ βj

)
as a linear combination γje(λjx/N) +

γje(−λjx/N) where |γj| = 1
2

one can check that

∑
x

cos

(
2πλix

N
+ βi

)
cos

(
2πλjx

N
+ βj

)
= 0

unless i = j, in which case it equals N/2. Here we have used dissociativity in a very minor
way in observing that λi + λj 6= 0. The result follows immediately.
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Proposition 17 Let t ∈ R and let f be a cosine polynomial of the form (7). Then we have
the inequality

N−1
∑
x

exp(tf(x)) ≤ exp

(
N−1t2

∑
x

f(x)2

)
.

Proof. Lemma 14 implies that

N−1
∑
x

exp(tf(x)) ≤ N−1
∑
x

k∏
j=1

(
cosh(tcj) + sinh(tcj) cos

(
2πλjx

N
+ βj

))
. (8)

As in the proof of Lemma 16 write each cosine cos
(

2πλjx

N
+ βj

)
as a linear combination

γje(λjx/N) + γje(−λjx/N). If one does this in the right- hand side of (8) and multiplies out
one gets a huge linear combination (with coefficients depending on t) of exponentials

e (2π(ε1λ1 + · · ·+ εkλk)x/N) ,

where each εj is −1, 0 or 1. The dissociativity of Λ implies that the integral over ZN of all
but one of these terms vanishes. The remaining term is the one with ε1 = · · · = εk = 0,
which comes with a coefficient

∏k
j=1 cosh(tcj). Thus from (8), Lemma 15 and Lemma 16 we

deduce that

N−1
∑
x

exp(tf(x)) ≤
k∏
j=1

cosh(tcj)

≤ exp

(
1

2
t2
∑
j

c2
j

)
= exp

(
N−1t2

∑
f(x)2

)
.

as required.

Proposition 18 (Chang) Let ρ, α ∈ [0, 1], let A ⊆ ZN be a set of size αN and let R ⊆ ZN
be the set of all r for which |Â(r)| ≥ ρ|A|. Let Λ be a dissociated subset of R. Then
|Λ| ≤ 2ρ−2 log

(
1
α

)
.

Proof. Suppose that Λ = {λj}kj=1 and set

f(x) = <

(
k∑
j=1

Â(λj)ω
−λjx

)
.

13



This is a cosine polynomial of the type described by Proposition 17 in which cj = |Â(λj)|.
Observe also that f̂(r) = NÂ(r)/2 if r ∈ Λ ∪ −Λ and zero otherwise. This implies that∑

x

f(x)A(x) = N−1
∑
r

f̂(r)Â(r) = 2N−2
∑
r

|f̂(r)|2 = 2N−1
∑
x

|f(x)|2. (9)

Proposition 17, an application of the weighted AM-GM inequality and (9) give

1

|A|
exp

(
t2
∑
|f(x)|2

N

)
≥ 1

N |A|
∑
x

exp(tf(x))

≥ 1

N |A|
∑

exp(tf(x))A(x)

≥ 1

N
exp

(
t

|A|
∑

f(x)A(x)

)
.

=
1

N
exp

(
2t

n|A|
∑
x

f(x)2

)
.

Choosing t = |A|−1 gives

α ≥ exp

(
1

N |A|2
∑
x

f(x)2

)
.

The proof of the proposition is concluded by using Lemma 16 and our assumption that Λ ⊆ R
to observe that ∑

x

f(x)2 =
N

2

∑
j

c2
j

=
N

2

∑
r∈Λ

|Â(r)|2

≥ kρ2N |A|2

2
.

Theorem 13 is a simple corollary of this proposition. Indeed let A,α, ρ be as in the statement
of the theorem and let Λ be a maximal dissociated subset of R. Then |Λ| ≤ 2ρ−2 log(1/α).
The maximality of Λ implies that any r ∈ R is involved in some equation

εr +
∑
i

εiλi = 0;

otherwise, we could add r to Λ to create a larger dissociated subset of R. Thus R is contained
in the cube spanned by Λ.
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It turns out that the exponential moment inequality of Proposition 17 implies good bounds
for ‖f‖p. These bounds can also be established directly, and may then be used to deduce
Theorem 13 in another way. See [3] or [8] for details.

Lemma 19 Let f be as in (7) and let p ≥ 2. Then we have ‖f‖p ≤ 5
√
p‖f‖2.

Proof. Suppose that t ≥ 0. Suppose to begin with that p is an even integer. A simple
calculus exercise confirms that y 7→ ype−ty is maximised on [0,∞) when y = p/t and it
follows that one has

yp ≤ ety
(p
t

)p
.

Substituting y = f(x) and using Proposition 17 gives

‖f‖pp ≤
(p
t

)p
et

2‖f‖22 .

Putting t =
√

p
2‖f‖22

gives the inequality ‖f‖p ≤ 3
√
p‖f‖2. Obtaining an inequality for any

real p ≥ 2 is now an easy matter. Indeed given p there is an even integer p′ ≤ 2p, and then

‖f‖p ≤ ‖f‖p′ ≤ 5
√
p‖f‖2.

2.3 Proof of Theorem 11.

Let A ⊆ ZN be a set of size αN with |A + A| ≤ C|A|. Our first observation is that A has
many additive quadruples, and hence by (5) that

∑
r |Â(r)|4 is large. To see this write rA(x)

for the number of pairs (a1, a2) ∈ A2 with a1 + a2 = x. Then

N−1
∑
r

|Â(r)|4 = # additive quadruples in A

=
∑

x∈A+A

rA(x)2

≥ 1

|A+ A|

(∑
x

rA(x)

)2

=
|A|4

|A+ A|

=
|A|3

C
.

Thus ∑
r

|Â(r)|4 ≥ α3N4

C
. (10)
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Now let R be the set of all r 6= 0 for which |Â(r)| ≥ |A|/2
√
C. We claim that 2A − 2A

contains B(R, 1
20

). Indeed if x ∈ B(R, 1
20

) then, for any r ∈ R,∣∣1− ω−rx∣∣ =
∣∣1− e−2πirx/N

∣∣ = 2 |sin(πrx/N)| ≤ 2π

20
<

1

2
.

It follows that ∑
r

|Â(r)|4ω−rx =
∑
r

|Â(r)|4 −
∑
r

|Â(r)|4
(
1− ω−rx

)
>

1

2

∑
r

|Â(r)|4 − 2
∑

r/∈R,r 6=0

|Â(r)|4

≥ α3N4

2C
− 2 sup

r/∈R,r 6=0

|Â(r)|2
∑
r

|Â(r)|2

≥ 0.

Here we have made use of (4) and (10). The claim follows immediately from this and (6).
Parseval’s identity tells us that |R| ≤ 4C/α. However we did not prove Theorem 13 for
nothing, and using it allows us to get something much stronger. The theorem implies that

R ⊆ Λ, where |Λ| ≤ 8C log(1/α). This means that B(R, 1
20

) contains B
(

Λ, 1
20|Λ|

)
; indeed

any r ∈ R can be written as
∑|Λ|

j=1 εjλj with εj ∈ {−1, 0, 1}, and so if ‖λjx/N‖ ≤ 1/20|Λ| for
all x we have ∥∥∥rx

N

∥∥∥ ≤ |Λ|∑
j=1

∥∥∥∥λjxN
∥∥∥∥ ≤ 1

20
.

Theorem 11 follows from these remarks and the claim immediately preceding them.

2.4 Further remarks

It is natural to ask whether Theorem 13 is best possible, in the sense of whether or not
one can significantly add to the structural information it gives about the large spectrum. At
least, I thought this was a natural question and that is why I bothered to prove the following:

Theorem 20 (G. [7]) Let α, ρ be positive real numbers satisfying α ≤ 1/8, ρ ≤ 1/32 and

ρ−2 log(1/α) ≤ logN

log logN
. (11)

Then there is a set A ⊆ ZN with |A| = bαNc such that |Â(r)| ≥ ρ|A| for all r ∈ R, where R
is not contained in Λ for any set Λ with |Λ| ≤ 2−12ρ−2 log(1/α).
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3 Lecture 3: Minkowski’s second theorem. Freiman

homomorphisms. Conclusion of the proof.

The main result of the previous lecture was Theorem 11, which said that if A ⊆ ZN has small
sumset then 2A − 2A contains a large Bohr neighbourhood. To use this to prove Freiman’s
theorem we must understand three further issues:

• What is the structure of a Bohr neighbourhood? In particular, in what sense does it
look like a multidimensional progression?

• Freiman’s theorem concerns subsets of Z, not of ZN . How can we move between the
two situations?

• What on earth has the structure of 2A− 2A got to do with the structure of A?

We will answer these questions in this final lecture, and this will conclude the proof of
Freiman’s theorem.

3.1 Minkowski’s second theorem and the structure of Bohr neigh-
bourhoods

It is clear that a Bohr neighbourhood B({r}, δ) defined by one point is simply an arithmetic
progression in ZN . The structure of higher- dimensional Bohr neighbourhoods is rather less
obvious, but as it turns out they resemble high-dimensional arithmetic progressions. In this
section we establish the following quantitative result along these lines using a result from the
geometry of numbers.

Proposition 21 Let R ⊆ ZN be a set of cardinality k, and let δ ∈ (0, 1/2). Then the Bohr
neighbourhood B(R, δ) contains a proper arithmetic progression of dimension k and size at
least (δ/k)kN .

The fact that the progression we obtain is proper turns out to be very helpful later on.

Let Λ ⊆ R
n be a lattice, that is a set of the form

⊕n
j=1 Zvj where the vj are linearly

independent. If K ⊆ Rn is an open convex body then we define the kth successive minimum
of K with respect to Λ to be

λk(K,Λ) = inf {λ > 0 | λK contains k linearly independent elements of Λ} .

Minkowski’s second theorem is the following rather remarkable result.

Theorem 22 (Minkowski’s second theorem) Suppose that K is an open, convex, cen-
trally symmetric subset of Rn and let Λ be a lattice. Let λi = λi(K,Λ) be the successive
minima of K with respect to Λ. Then we have

λ1λ2 . . . λn|K| ≤ 2n|Λ|.
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Here |K| is the volume of K and |Λ| is the determinant of Λ, that is the volume of the
parallelepipid spanned by v1, . . . , vn (or equivalently | det(v1, . . . , vn)|).

Minkowski’s second theorem easily implies his first, which says that if K is a closed, convex,
centrally symmetric body and if |K| ≥ 2n|Λ| then K contains a non-zero element of Λ.

Now given an open convex body K and a lattice Λ we may use the successive minima to
pick a basis b1, . . . , bn for Rn. We build this basis inductively; first of all pick an element of
λ1K ∩ Λ and call it b1, then pick an element of λ2K ∩ Λ which is not in the linear span of
b1, call it b2, and so on. I call such a basis a directional basis with respect to the pair (K,Λ).
(this is not standard terminology). A very convenient consequence of our assumption that
K is open is that bj /∈ λjK, so that every lattice point in λjK is a linear combination of
b1, . . . , bj−1.

There now follows a proof of Minkowski’s second theorem. I have to confess to not really
understanding this proof on a conceptual level, and would welcome any insights that anyone
might have about just where the argument comes from. We begin with a lemma of Blichfeldt.

Lemma 23 (Blichfeldt) Let K be any open body with |K| > |Λ|. Then K contains two
distinct points a and b with a− b ∈ Λ.

Proof. This is, at heart, an extremely simple averaging argument. We may assume that K
is bounded, since |K ∩B(0, R1)| > |Λ| for R1 sufficiently large. Suppose that the lemma is
false, so that any translate K + x contains at most one point of Λ. Let C be the `∞ cube
{x | ‖x‖ ≤ R2}. Then certainly we have

1

|C|

∫
x∈C
|(K + x) ∩ Λ| dx ≤ 1, (12)

and furthermore

1

|C|

∫
x∈C
|(K + x) ∩ Λ| dx =

∫
K(y)

(
1

|C|

∫
x∈C

Λ(x− y) dx

)
dy. (13)

However it is “obvious” (i.e. it is left as an exercise to the reader) that

lim
R2→∞

1

|C|

∫
x∈C

Λ(x− y) dy =
1

|Λ|

uniformly for y in any compact set. Since, in particular, K is contained in a compact set we
may take limits of (12) and (13) as R2 →∞ to derive a contradiction.

Proceeding now with the proof of Theorem 22, let K be an open, centrally symmetric and
convex subset of Rn and let Λ be a fixed lattice. Let λ1, . . . , λn be the successive minima
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of K with respect to Λ and let b1, . . . , bn be the corresponding directional basis. For each
j ∈ {1, . . . , n} we define a map φj : K → K by mapping x ∈ K to the centre of gravity of
the slice of K which contains x and is parallel to the subspace spanned by b1, . . . , bj−1 (for
j = 1, φ1(x) = x). Define a map φ : K → R

n by

φ(x) =
n∑
j=1

(λj − λj−1)φj(x), (14)

where we are operating with the convention that λ0 = 0.

Let us make a few further observations concerning the φj and φ. We define functions cij :
R
n → R by looking at φj in coordinates relative to the directional basis b1, . . . , bn. Specifically

if x = x1b1 + · · ·+ xnbn we write

φj(x) =
∑
i

cij(x)bi. (15)

The definition of φj means that cij(x) = xi whenever i ≥ j, whilst if j > i then cij(x) depends
only on xi+1, . . . , xn. It follows that we can write

φ(x) =
n∑
i=1

bi (λixi + ψ (xi+1, . . . , xn)) (16)

for certain continuous functions ψj.

Now observe that |φ(K)| = λ1 . . . λn|K|, the determinant of the Jacobean of the transforma-
tion x′i = λixi + ψi(xi+1, . . . , xn) being particularly easy to evaluate due to the matrix being
upper triangular. Suppose, as a hypothesis for contradiction, that λ1 . . . λn|K| > 2n|Λ|. By
Blichfeldt’s lemma and the preceding observation this means that φ(K) contains two ele-
ments φ(x) and φ(y) which differ by an element of 2Λ, so that 1

2
(φ(x) − φ(y)) ∈ Λ. Write

x =
∑
xibi and y =

∑
yibi, and suppose that k is the largest index such that xk 6= yk. Then

we have φi(x) = φi(y) for i > k, so that

φ(x)− φ(y)

2
=

n∑
j=1

(λj − λj−1)

(
φj(x)− φj(y)

2

)

=
k∑
j=1

(λj − λj−1)

(
φj(x)− φj(y)

2

)
.

This has two consequences. First of all the convexity of K implies that 1
2
(φj(x)−φj(y)) ∈ K

for all j, and hence (again by convexity) 1
2
(φ(x) − φ(y)) ∈ λkK. Secondly we may easily

evaluate the coefficient of bk when 1
2
(φ(x)−φ(y)) is written in terms of our directional basis.
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It is exactly λk(xk − yk)/2. In particular this is non-zero, which is contrary to our earlier
observation that Λ ∩ λkK is spanned by b1, . . . , bk−1.

I have already professed my lack of intuition for this argument. There is, however, one small
mystery that can be cleared up. This is our use of the openness of K, which at first sight
seems to have been crucial. In fact this is just a convenience, and one could have dealt with
closed bodies throughout. Doing that would have required the introduction of various messy
devices, such as the consideration of a δ-neighbourhood of K, and the use of openness is far
prettier.

Let us now deduce Theorem 21. Let R = {r1, . . . , rk} be a subset of ZN and consider the
lattice Λ = NZk +(r1, . . . , rk)Z. This is a slight abuse of notation, for the ri are not integers,
but the definition should be clear and unambiguous. We have |Λ| = Nk−1. Let K be the
`∞ box {x ∈ Rn : ‖x‖∞ < δN}, which is open, convex and has volume (2δ)kNk, and let
b1, . . . , bk be a directional basis for Rk. We have bi ∈ λiK, where λ1, . . . , λk are the successive
minima of K. Now bi lies in Λ, and so it has the form

bi = xi(r1, . . . , rk) +Nv,

where v ∈ Zk and, by another abuse of notation, we regard the xi as elements of ZN . The
fact that ‖bi‖∞ ≤ λiδN implies that each ‖xir/N‖, r ∈ R, is at most λiδ. Look at the
multidimensional AP

Q = {µ1x1 + · · ·+ µkxk, |µi| ≤ b1/kλic} ⊆ ZN .

We claim that Q ⊆ B(R, δ). Indeed for any r ∈ R we have∥∥∥∥r(µ1x1 + · · ·+ µkxk)

N

∥∥∥∥ ≤ k∑
i=1

|µi|
∥∥∥rxi
N

∥∥∥
≤

k∑
i=1

⌊
1

λik

⌋
λiδ

≤ δ.

The size of Q is at least k−k(λ1 . . . λk)
−1, which, by Minkowski’s Second Theorem, is at least

(δ/k)kN . It remains to show that Q is proper. Suppose that

µ1x1 + · · ·+ µkxk = µ′1x1 + · · ·+ µ′kxk

in ZN , where |µi|, |µ′i| ≤ b1/kλic. Then the vector

b = (µ1 − µ′1)b1 + · · ·+ (µk − µ′k)bk
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lies in NZk and furthermore

‖b‖∞ ≤
k∑
i=1

2

⌊
1

λik

⌋
‖bi‖∞

≤ 2δN.

Since we are assuming that δ < 1/2 it follows that b = 0 and hence, due to the linear
independence of the bi, that µi = µ′i for all i. Therefore Q is indeed proper.

Remark. It is interesting to enquire as to how accurate Proposition 21 actually is. If k is
small and R = {r1, . . . , rk} is selected “randomly” then the events ‖xri/N‖ should be roughly
independent. Each has probability about 2δ, so we expect |B(R, δ)| ≈ (2δ)kN . Thus the
dependence on δ in Proposition 21 is certainly best possible. It is likely that the factor of k
is necessary as well; I have not though seriously about this point.

3.2 Passing from Z to ZN : Freiman homomorphisms and another
argument of Ruzsa.

In the book [4] Freiman introduces a number of tools for studying the structure of sets under
addition. One that has turned out to be very useful is (what is now known as) the notion of
Freiman homomorphism. Let k be a positive integer, let A be a subset of an abelian group
G, and let φ : A → H be a function from A into another abelian group. We say that φ is a
(Freiman) k-homomorphism if whenever x1, x2, . . . , x2k are elements of A with

x1 + · · ·+ xk = xk+1 + · · ·+ x2k

we have

φ(x1) + · · ·+ φ(xk) = φ(xk+1) + · · ·+ φ(x2k).

If φ has an inverse which is also a Freiman homomorphism then we say that it is a Freiman
isomorphism. We will occasionally use the notation A ∼=k B to express the fact that A is
Freiman k-isomorphic to B. Observe that a Freiman homomorphism induces a well-defined
function on the k-fold sumset kA in an obvious way. Observe also that a 1-1 Freiman
homomorphism need not be a Freiman isomorphism; for example the obvious map from
{0, 1} ⊆ Z to Z2 is a 1-1 Freiman homomorphism of all orders, but φ−1 is not a Freiman
homomorphism of any order k ≥ 2. This slightly disconcerting property would doubtless
make an algebraist use a different nomenclature, but we shall stick with the standard practice.

The following proposition provides the link between subsets of Z and subsets of ZN that we
are looking for.
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Proposition 24 (Ruzsa) Let A ⊆ Z be a set of size n with |A+ A| = Cn. Let m > C2kn,
and let k ≥ 2 be an integer. Then there is a subset A′ ⊆ A of size at least n/k which is
k-isomorphic to a subset of Zm.

Proof. Let p be a very large prime number, and consider the composition of maps

Z
ψ1−→ Zp

ψ2(q)−→ Zp
ψ3−→ Z

ψ4−→ Zm

where ψ1 and ψ4 are reduction mod p and m respectively, ψ2(q) is multiplication by q and ψ3

is the map which sends x ∈ Zp to the corresponding residue in the interval {0, 1, . . . , p− 1}.

ψ1, ψ2 and ψ4 are Freiman homomorphisms of any order. ψ3 is a homomorphism of order
k when restricted to any interval of the form Ij =

(
j−1
k
p, j

k
p
]
. Choose p large enough that

ψ1|A is 1-1. Write Sj = {x ∈ A | ψ2(ψ1(x)) ∈ Ij}. Then, for any q, there is j = j(q) such
that |Sj| ≥ n/k. Observe that for any q the composition ψ = ψ1 ◦ ψ2(q) ◦ ψ3 ◦ ψ4 is a
k-homomorphism when restricted to Sj(q).

To conclude the proof we show that there is a choice of q for which ψ is invertible, and for
which its inverse is also a k-homomorphism. It suffices to show that whenever

ψ(x1) + · · ·+ ψ(xk) = ψ(xk+1) + · · ·+ ψ(x2k)

we have

x1 + · · ·+ xk = xk+1 + · · ·+ x2k,

since this clearly implies that ψ is 1-1. The only way in which these conditions can fail to
hold, for a given q, is if there is some non-zero expression s = x1+x2+· · ·+xk−xk+1−· · ·−x2k

such that

qs(modp) ≡ 0(modm), (17)

where the (modp) instructs one to take the least non-negative residue modulo p. Let us
fix s and ask about values of q for which (17) fails. As q ranges over Z×p , qs(modp) covers
[1, . . . , p − 1]. The number of elements in this interval divisible by m is at most (p − 1)/m.
Now each s lies in the set (kA−kA)\{0}, and by Plünnecke’s inequality this has cardinality
less than C2kn. It follows that the number of “bad” q, that is q such that (17) holds for some
s, is less than C2kn(p− 1)/m < p− 1. Hence there is at least one “good” value of q.

Pick such a value of q and set A′ = Sj(q). Then, by what we have discovered so far, the map
ψ = ψ1 ◦ ψ2(q) ◦ ψ3 ◦ ψ4 is a Freiman k-isomorphism from A′ to a subset of Zm.

Corollary 25 Let A ⊆ Z have cardinality n and suppose that |A| = n and that |A+A| ≤ Cn.
Then 2A− 2A contains a proper arithmetic progression of dimension at most 211C logC and
size at least exp (−216C(logC)2)n.
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Proof. This results from combining Proposition 24, Theorem 11 and Proposition 21. Take
k = 8 in Proposition 24 and choose a prime m ∈ (C16n, 2C16n]. Then we know that there
is A′ ⊆ A, |A′| ≥ n/8, which is 8-isomorphic to a subset of Zm. Let X be this subset; then
|X| ≥ m/16C16. Furthermore it is easy to see that |X+X| = |A′+A′| (this is a consequence
of the fact that A′ ∼=8 X) and so

|X +X| = |A′ + A′| ≤ |A+ A| ≤ C|A| ≤ 8C|A′| = 8C|X|.

Hence, by Theorem 11, 2X − 2X contains a Bohr neighbourhood B(K, δ) where |K| ≤
211C logC and δ ≥ (215C logC)

−1
. By Proposition 21 this means that 2X − 2X con-

tains a proper (multidimensional) AP of dimension at most 211C logC and size at least
exp (−216C(logC)2)n.

Now the fact that A′ ∼=8 X implies that 2A′ − 2A′ ∼=2 2X − 2X, and the property of being a
proper multidimensional AP of a given size and dimension is preserved under 2-isomorphism
(these are all easy checks). Hence 2A′ − 2A′ also contains a large AP, and hence, a fortiori,
so does 2A− 2A.

3.3 The final argument.

The following proposition concludes the proof of Freiman’s theorem.

Proposition 26 (Chang) Suppose that A ⊆ Z has size n, that |A + A| ≤ Cn and that
2A − 2A contains a proper progression P of size ηn and dimension d. Then A is contained
in a progression of size at most 2d(C4η−1)5Cn and dimension at most d+ 4C log(C4/η).

Proof. We describe an algorithm for selecting some non-negative integer t and subsets Si,
i ≤ t, of A. Set P0 = P . Let R0 be a maximal subset of A for which the translates P0 + x,
x ∈ R0, are all disjoint. If |R0| ≤ 2C then set t = 0 and S0 = R0, and terminate the
algorithm. Otherwise take S0 to be any subset of R0 of cardinality 2C, and set P1 = P0 +S0.
Take R1 to be a maximal subset of A for which the translates P1 +x, x ∈ R1, are all distinct.
If |R1| ≤ 2C then set t = 1 and S1 = R1 and terminate the algorithm. Otherwise choose
S1 ⊆ R1 with |S1| = 2C and set P2 = P1 + S1. Continue in this way.

We claim that this is a finite algorithm, and that in fact t ≤ log(C4/η). Indeed the fact that
the translates Pi + x, x ∈ Si, are all disjoint means that |Pi+1| = |Pi||Si| for i ≤ t − 1. It
follows that

|Pt| ≥ |P ||S0| . . . |St−1| ≥ η(2C)tn. (18)

Observe, however, that

Pt ⊆ P + A+ A+ · · ·+ A,
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where there are t copies of A. Since P ⊆ 2A − 2A this means that Pt ⊆ (t + 2)A − 2A,
and hence by Plünnecke’s inequality we have |Pt| ≤ Ct+4n. Comparison with (18) proves the
claim.

Let us examine what happens when the algorithm finishes. Then we have a set Rt ⊆ A,
|Rt| ≤ 2C, which is maximal subject to the translates Pt+x, x ∈ Rt, being disjoint. In other
words if a ∈ A then there is x ∈ Rt such that (Pt + a) ∩ (Pt + x) 6= ∅, and so

A ⊆ Pt − Pt +Rt ⊆ (P − P ) + (S0 − S0) + · · ·+ (St−1 + St−1) +Rt. (19)

If S = {s1, . . . , sk} is a subset of an abelian group define S to be the cube spanned by S, that
is the set of everything of the form

∑
i εisi where εi ∈ {−1, 0, 1}. S is a multidimensional

progression of dimension |S| and size at most 3|S|, and it contains the set S − S. It follows
from (19) that A ⊆ Q, where Q is the multidimensional progression

Q = P − P + S0 + · · ·+ St−1 +Rt.

The dimension of Q satisfies

dim(Q) ≤ dim(P ) +
t−1∑
i=0

|Si|+ |Rt|

≤ d+ 2C(t+ 1)

≤ d+ 4C log(C4/η).

To estimate the size of Q, note that the properness of P implies that |P −P | = 2d|P |. Hence

|Q| ≤ |P − P | ·
t−1∏
i=0

3|Si| · 3|Rt|

≤ 2d32C(t+1)|P |
≤ 2d34C log(C4/η)C4n

≤ 2d
(
C4

η

)5C

n,

the penultimate step following from Plünnecke’s inequality and the fact that P ⊆ 2A− 2A.

Combining this proposition with Corollary 25 gives the following effective version of Freiman’s
theorem. The bounds here are, except for the constants, the best known at the present time.

Theorem 27 (Effective Freiman Theorem) Let A ⊆ Z have cardinality n and suppose
that |A + A| ≤ Cn. Then A is contained in a multidimensional AP of dimension at most
220C2(logC)2 and size at most exp (220C2(logC)2)n.
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3.4 Applications of Freiman’s theorem.

The most substantial application of Freiman’s theorem that I know of occurs in W.T. Gowers’
proof of Szemerédi’s theorem with explicit bounds.

Theorem 28 (Gowers) Let k ≥ 3 be an integer and let A be a subset of {1, . . . , N} of

density at least (log logN)−2−2k+9

. Then A contains a non-trivial arithmetic progression of
length k.

I cannot even begin, in these lectures, to give an outline of why Freiman’s theorem should
be relevant to this problem. The reader is referred to [5]. Although this paper is some 123
pages long, it is not such a great effort to read the proof of the case k = 4. If the reader does
this she will encounter several ideas related to those we have discussed here.

There are many applications of the various intermediate results we have proved. For another
application of Chang’s structure theorem, see [9].

3.5 Further remarks.

One reasonably natural question to ask is whether we can ensure that the progression obtained
in Freiman’s theorem be proper. It turns out that we can, using the following unpublished
result of Gowers and Walters:

Theorem 29 (Gowers – Walters) Let P be an AP of dimension d. Then there is a proper
progression P ′ with P ⊆ P ′ and |P ′| ≤ dd

3|P |.

The application of this result to Freiman’s theorem does result in a rather bigger progression
(of size more like eC

6+ε
n). Walters has suggested that he can replace the exponent 3 in

Theorem 29 with 2, which would result in a bound of the form eC
4+ε
n in Freiman.

Another very natural question to ask is what the best bounds one could hope for might
be. For applications (such as modifying Gowers’ arguments on Szemerédi’s theorem to cover
arithmetic progressions in the primes) it would be of great interest if one could take the
dimension in Freiman’s theorem to be Cε. Unfortunately an easy example shows that this is
too much to hope for. Indeed take A = I + S where I = [1, . . . , bn/Cc] and S is a suitably
“spread out” set. Then |A + A| ≈ Cn, but any covering of A by a progression of dimension
substantially less than C will be very uneconomical.

This example has the property that large subsets of A, that is each translate of I, are very
highly structured indeed. For applications (I am thinking once again of progressions in
primes) it would be of the utmost interest to prove a result of the following kind.

Conjecture 30 (Gowers,[6]) Suppose that A ⊆ Z, that |A| = n and that |A + A| ≤ Cn.
Then there is a reasonably large set A′ ⊆ A which is economically contained in a progression
of dimension d = O(Cε).

25



One might even suggest that A can be covered by a small number of small- dimensional APs
(I am not going to try and make any of these statements precise).

A key point in the proof of Freiman’s theorem was the location of arithmetic progressions in
2A−2A, where A ⊆ ZN was reasonably large and had small sumset. Without any hypothesis
on |A+ A|, Theorems 11 and 21 combine to give

Theorem 31 Suppose that A ⊆ ZN has cardinality αN . Then 2A − 2A contains an AP of
dimension at most 8α−1 log(1/α) and cardinality at least exp (−Cα−1 log(1/α)2)N , where C
is an absolute constant.

There are no examples to rule out the possibility that the “correct” dimension here should
be C log(1/α). Any bound of the form α−ε would be of similar interest and applicability to
a proof of Conjecture 30.

3.6 Acknowledgements.

These notes derive from three main sources. Firstly I have made use of the book [11], for
which Nathanson deserves much credit as these beautiful topics were previously not widely
known. Secondly I benefitted hugely from attending a course by Gowers at Cambridge in
1999, in which he explained the mathematics underlying his proof of Szemerédi’s theorem.
Finally I am indebted to Imre Ruzsa for sharing with me his ideas on Chang’s Theorem.
The vast majority of the material in Lecture 2 is based on conversations I had with him in
Budapest.
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