HW problem about sums and products

February 23, 2011

As a consequence of a certain theorem due to Konyagin and Glibichuk it is known that if A is a multiplicative subgroup of \mathbb{F}_{p} having size p^{δ}, and if we let $B:=A \cup(-A) \cup\{0\}$ then the smallest k for which $k B=B+\cdots+B=\mathbb{F}_{p}$ satisfies $k<4^{1 / \delta+o(1 / \delta)}$. In this exercise I will walk you through an alternate proof (due to myself, and then refined by Todd Cochrane) that achieves the somewhat worse upper bound $k<7^{1 / \delta+o(1 / \delta)}$.

Step 1. Let $B=A \cup(-A) \cup\{0\}$. Show that for any positive integers λ, ℓ we have that if

$$
(\lambda+1) \ell B \subseteq \frac{\ell B}{\lambda B}
$$

(Here, $\ell B / \lambda B$ denotes all quotients $\left(b_{1}+\cdots+b_{\ell}\right) /\left(b_{1}^{\prime}+\cdots+b_{\lambda}^{\prime}\right)$, with the b_{i} 's and b_{j}^{\prime} 's in B, and where we disallow $b_{1}^{\prime}+\cdots+b_{\lambda}^{\prime}=0$.) then

$$
\frac{\lambda \ell B}{\ell B}+B \subseteq \frac{\ell B}{\lambda \ell B}
$$

Using the Cauchy-Davenport inequality, conclude that

$$
\text { either } \frac{\lambda \ell B}{\ell B}=\mathbb{F}_{p} \text { or } \exists \theta \in(\lambda+1) \ell B \text { with } \theta \notin \frac{\ell B}{\lambda B} \text {. }
$$

Step 2. And now suppose we have constructed elements $\theta_{1}, \ldots, \theta_{m} \in \mathbb{F}_{p}$ with $\theta_{i} \in r_{i} B$, such that

$$
\left|B+\theta_{1} * B+\cdots+\theta_{m} * B\right|=|B|^{m+1}
$$

In other words, all expressions $b_{1}+\theta_{1} b_{2}+\cdots+\theta_{m} b_{m+1}$ are distinct as one varies over $\left(b_{1}, \ldots, b_{m+1}\right) \in B^{m+1}$. Then show how to construct $\theta_{m+1} \in r_{m+1} B$ so that either we have

$$
B+\theta_{1} * B+\cdots+\theta_{m+1} * B=\mathbb{F}_{p}
$$

or else

$$
\left|B+\theta_{1} * B+\cdots+\theta_{m+1} * B\right|=|B|^{m+1}
$$

A hint: if we had a "collision" where

$$
b_{1}+\theta_{1} b_{2}+\cdots+\theta_{m+1} b_{m+2}=b_{1}^{\prime}+\theta_{1} b_{2}^{\prime}+\cdots+\theta_{m+1} b_{m+2}^{\prime}
$$

it would mean that

$$
\frac{\left(b_{1}-b_{1}^{\prime}\right)+\theta_{1}\left(b_{2}-b_{2}^{\prime}\right)+\cdots+\theta_{m}\left(b_{m+1}-b_{m+1}^{\prime}\right)}{b_{m+2}^{\prime}-b_{m+2}}=\theta_{m+1}
$$

so long as that denominator is non-zero. But if we choose θ_{m+1} carefully this cannot happen (e.g. if θ_{m+1} is in $h B$ for sufficiently large h the above lemma will tell you it cannot be such a quotient).

Step 3. When you finish, you will get

$$
B+\theta_{1} * B+\cdots+\theta_{n} * B=\mathbb{F}_{p}
$$

Since A is a subgroup and since the $\theta_{i} \in r_{i} B$, conclude that

$$
B+\theta_{1} * B+\cdots+\theta_{n} * B \subseteq\left(1+r_{1}+\cdots+r_{n}\right) B
$$

and that $k<1+r_{1}+\cdots+r_{n}$. Working through your values for the r_{i} 's it turns out that this gives $k<7^{1 / \delta+o(1 / \delta)}$, as claimed.

