HW problem about sums and products

February 23, 2011

As a consequence of a certain theorem due to Konyagin and Glibichuk it is known that if A is a multiplicative subgroup of \mathbb{F}_p having size p^{δ} , and if we let $B := A \cup (-A) \cup \{0\}$ then the smallest k for which $kB = B + \cdots + B = \mathbb{F}_p$ satisfies $k < 4^{1/\delta + o(1/\delta)}$. In this exercise I will walk you through an alternate proof (due to myself, and then refined by Todd Cochrane) that achieves the somewhat worse upper bound $k < 7^{1/\delta + o(1/\delta)}$.

Step 1. Let $B = A \cup (-A) \cup \{0\}$. Show that for any positive integers λ, ℓ we have that if

$$(\lambda + 1)\ell B \subseteq \frac{\ell B}{\lambda B}$$

(Here, $\ell B/\lambda B$ denotes all quotients $(b_1 + \cdots + b_\ell)/(b'_1 + \cdots + b'_\lambda)$, with the b_i 's and b'_j 's in B, and where we disallow $b'_1 + \cdots + b'_\lambda = 0$.) then

$$\frac{\lambda\ell B}{\ell B} + B \subseteq \frac{\ell B}{\lambda\ell B}$$

Using the Cauchy-Davenport inequality, conclude that

either
$$\frac{\lambda \ell B}{\ell B} = \mathbb{F}_p$$
 or $\exists \theta \in (\lambda + 1) \ell B$ with $\theta \notin \frac{\ell B}{\lambda B}$.

Step 2. And now suppose we have constructed elements $\theta_1, ..., \theta_m \in \mathbb{F}_p$ with $\theta_i \in r_i B$, such that

$$|B + \theta_1 * B + \dots + \theta_m * B| = |B|^{m+1}$$

In other words, all expressions $b_1 + \theta_1 b_2 + \cdots + \theta_m b_{m+1}$ are distinct as one varies over $(b_1, \dots, b_{m+1}) \in B^{m+1}$. Then show how to construct $\theta_{m+1} \in r_{m+1}B$ so that either we have

$$B + \theta_1 * B + \dots + \theta_{m+1} * B = \mathbb{F}_p$$

or else

$$|B + \theta_1 * B + \dots + \theta_{m+1} * B| = |B|^{m+1}$$

A hint: if we had a "collision" where

$$b_1 + \theta_1 b_2 + \dots + \theta_{m+1} b_{m+2} = b'_1 + \theta_1 b'_2 + \dots + \theta_{m+1} b'_{m+2},$$

it would mean that

$$\frac{(b_1 - b'_1) + \theta_1(b_2 - b'_2) + \dots + \theta_m(b_{m+1} - b'_{m+1})}{b'_{m+2} - b_{m+2}} = \theta_{m+1},$$

so long as that denominator is non-zero. But if we choose θ_{m+1} carefully this cannot happen (e.g. if θ_{m+1} is in hB for sufficiently large h the above lemma will tell you it cannot be such a quotient).

Step 3. When you finish, you will get

$$B + \theta_1 * B + \dots + \theta_n * B = \mathbb{F}_p$$

Since A is a subgroup and since the $\theta_i \in r_i B$, conclude that

$$B + \theta_1 * B + \dots + \theta_n * B \subseteq (1 + r_1 + \dots + r_n)B,$$

and that $k < 1 + r_1 + \cdots + r_n$. Working through your values for the r_i 's it turns out that this gives $k < 7^{1/\delta + o(1/\delta)}$, as claimed.