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1 Introduction

We saw in class the standard combinatorial Littlewood-Offord inequality, and
here we will consider the discrete version:

Theorem 1 Suppose x1, ..., xk are non-zero real numbers. Then, for any

x ∈ R we have that there are O(2k/
√

k) choices for (ε1, ..., εk) ∈ {+1,−1}k

such that

ε1x1 + · · ·+ εkxk = x.

Our proof will make use of Fourier analysis, together with a basic fact
from elementary Diophantine approximation.

2 Proof of the theorem

We begin with the following lemma that we will apply to transfer our problem
to ZN where the Fourier analysis is easier (this lemma is due to Dirichlet):

Lemma 1 Given y1, ..., yk ∈ R and Q ∈ Z+, there exists an integer 1 ≤ D ≤
Q and integers N1, ..., Nk such that

|yi − Ni/D| ≤ 1/DQ1/k.
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Proof. The proof is just via some pigeonholing: consider the set of mod 1
vectors

{(jy1, ..., jyk) (mod 1) : 0 ≤ j ≤ Q}.
For each of these points, draw a box around them of radius 1/2Q1/k using the
ℓ∞ norm. Each such box has volume 1/Q; and so thinking of these boxes as
subsets of the torus [0, 1]k we have that since there are Q + 1 of them, their
total volume exceeds the volume of the torus, implying that two of these
boxes must intersect. Say the boxes correspoinding to this intersection are
associated with j = j1 and j2, where j1 > j2. It is easy to see that this means
that for all i = 1, ..., k,

‖(j1 − j2)yi‖ = ‖j1yi − j2yi‖ ≤ 1/Q1/k.

(Here, ‖y‖ denotes the distance from y to the nearest integer.) Letting
D = j1 − j2 we then have that for i = 1, ..., k,

Dyi = Ii + δi, where |δi| ≤ 1/Q1/k, and Ii ∈ Z.

Dividing through by D the lemma now follows. �

We now resume the proof of Littlewood-Offord: given x1, ..., xk, consider
the set

S := {γ1x1 + · · · + γkxk : γi = 0,±2}.
(This set contains all the differences of two sums of the form ε1x1+· · ·+εkxk.)
Let E ≥ 1 be any integer such that for every non-zero s ∈ S we have that
|Es| ≥ 1, and set yi = Exi, i = 1, ..., k.

Next, we apply the above lemma, choosing Q ≥ 1 as needed later in the
proof. Let zi = Dyi = DExi, and note that zi = Ii + δi, where |δi| ≤ 1/Q1/k.
The point of choosing D and E will now be made clear by the following
claim, which basically says we can transfer our problem to Z:

Claim. For Q sufficiently large we will have that for any sequence ε1, ..., εk, ε
′
1, ..., ε

′
k =

±1,
ε1x1 + · · ·+ εkxk = ε′1x1 + · · ·+ ε′kxk (1)

if and only if
ε1I1 + · · ·+ εkIk = ε′1I1 + · · ·+ ε′kIk. (2)
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First let us suppose that (1) holds. Then, multiplying through by DE
and rearranging terms, we find that

(ε1 − ε′1)z1 + · · ·+ (εk − ε′k)zk = 0.

Writing the zi’s in terms of the Ii’s then gives

(ε1 − ε′1)I1 + · · ·+ (εk − ε′k)Ik = O(k/Q1/k).

If Q is large enough the RHS will be smaller than 1/2; and so, the LHS,
being an integer, must therefore be 0. This then establishes (2).

Conversely, suppose that (2) holds. Then, it follows that

E · ((ε1 − ε′1)x1 + · · ·+ (εk − ε′k)xk) = O(k/DQ1/k).

Again, if Q is large enough then the RHS will be less than 1/2 in magnitude;
yet, the LHS is of the form Es, where s ∈ S. Since E was chosen to make
any such non-zero product exceed 1 in magnitude, we are forced to have that
the LHS equals 0. The claim now follows.

Now choose N to be a very large prime number – so large that it does
not divide any non-zero integer of the form

γ1I1 + · · · + γkIk, where γi = 0,±2.

It is easy to see, then, that for such N we will have that

ε1x1 + · · ·+ εkxk = ε′1x1 + · · ·+ ε′kxk

if and only if

ε1I1 + · · ·+ εkIk ≡ ε′1I1 + · · ·+ ε′kIk (mod N).

That is to say, we have now reduced ourselves to a Littlewood-Offord problem
for ZN ... one that is amenable to the methods of discrete Fourier analysis.

Let now r(x) denote the number of representations

x ≡ ε1I1 + · · ·+ εkIk (mod N), where εi = ±1.

We have that
r(x) = 1{I1,−I1} ∗ · · · ∗ 1{Ik,−Ik}(x).
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By Fourier inversion, then, we deduce that

r(x) = N−1

N−1
∑

a=0

e2πiax/N r̂(a)

= N−1

N−1
∑

a=0

e2πiax/N 1̂{I1,−I1}(a) · · · 1̂{Ik,−Ik}(a)

= N−1

N−1
∑

a=0

e2πiax/N
k
∏

j=1

(e2πiaIj/N + e−2πiaIj/N )

= 2kN−1

N−1
∑

a=0

e2πiax/N
k
∏

j=1

cos(2πaIj/N).

Since all we need is an upper bound, we just need to work with

r(x) ≤ 2kN−1

N−1
∑

a=0

∣

∣

∣

∣

∣

k
∏

j=1

cos(2πaIj/N)

∣

∣

∣

∣

∣

.

Using Hölder, we deduce that

r(x) ≤ 2kN−1

k
∏

j=1

(

N−1
∑

a=0

| cos(2πaIj/N)|k
)1/k

.

Now, all the factors in this product are equal since the Ii’s are non-zero, and
since

{aIi : a = 0, ..., N − 1} ≡ {0, ..., N − 1} (mod N).

So,

r(x) ≤ 2kN−1
∑

|a|<N/2

| cos(2πa/N)|k.

To bound this sum from above, we only consider those a satisfying |a| <
N/4, since the total sum is at most double this. For such a we have that

cos(2πa/N) = 1 − (2πa/N)2/2 + O((a/N)4) < 1 − c(a/N)2,

for some c > 0 (we won’t even bother to work it out). Now suppose a satisfies

|a| ∈ [hN/
√

k, (h + 1)N/
√

k], where 0 ≤ h ≤
√

k/4.
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It follows that for such a we will have

| cos(2πa/N)|k ≤ (1 − c(a/N)2)k ≤ (1 − cj2/k)k ≤ e−cj2

.

So,

r(x) ≪ 2kN−1

√
k/4
∑

h=0

(N/
√

k)e−cj2 ≪ 2k/
√

k,

thus completing the proof of Littlewood-Offord.
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