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1 Introduction

Suppose that L is a 2D lattice in R2, given by L = Zv1 + Zv2, where v1 =
(x1, y1) and v2 = (x2, y2) are linearly independent. Furthermore suppose that
we have a rectangle R defined by

R := {(x, y) : −X ≤ x ≤ X, −Y ≤ y ≤ Y }.
In this exercise we will use Fourier analysis to uncover what relationships
should exist between v1, v2, X, and Y guaranteeing that any shift t + R of R
always contains a lattice point.

Basically, what we can try to do is to take the Fourier transform of 1R (the
indicator function for the set R), and then use Fourier inversion to show that
for each shift t+L of the lattice L, this shift intersects the set R. Actually, it
will not quite be enough to take the Fourier transform of just 1R, but instead
we will need to work with a smoothed version of 1R in order to make the
Fourier transform have the requisite “decay properties”. Basically, we will
need that the Fourier transform of our function is in L1.

It turns out that the dual group R̂
n is isomorphic to R

n, and that the
additive characters χ : Rn → C∗ take the form χ(~x) = e2πi(ξ·~x). Fourier
transforms are then defined via

f̂(χ) :=

∫

Rn

f(~x)χ(~x)d~x,

provided the integral exists and is finite, which will happen if f ∈ L1(Rn).
It is customary to represent this instead by

f̂(ξ) :=

∫

Rn

f(~x)e−2πi(ξ·~x)d~x =

∫

Rn

f(x1, ..., xn)e−2πi(ξ1x1+···+ξnxn)d~x,
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where ξ = (ξ1, ..., ξn). We now arrive at the main fact we will need:

Theorem 1 (Fourier Inversion Formula) Suppose f : Rn → C has the

property that f, f̂ ∈ L1(Rn). Then,

f(~x) =

∫

Rn

f̂(ξ)e2πi(ξ·~x)d~ξ.

The way we will use this to help in our lattice point problem is as follows:
first, note that the indicator function 1R for our rectangle, although is itself
an element of L1(R2), unfortunately has the property that 1̂R is not in L1:
we have that

1̂R(ξ1, ξ2) =

∫ X

−X

∫ Y

−Y

e−2πi(ξ1x+ξ2y)dydx =

(
∫ X

−X

e−2πiξ1xdx

) (
∫ Y

−Y

e−2πiξ2ydy

)

=
sin(2πξ1X) sin(2πξ2Y )

π2ξ1ξ2

.

And then we will have that this typically has size proportional to 1/|ξ1ξ2|,
at least when ξ is not too near 0, which implies that

∫

R2\D

dξ1dξ2

|ξ1ξ2|
= ∞,

where D is any disk enclosing (0, 0). This then means that

∫

R2

|1̂R(ξ)|dξ1dξ2 = ∞,

and therefore 1̂R 6∈ L1(R2). Fortunately, there is a standard trick for handling
this: smooth out the function 1R a little bit by convolving it with another
function. To carry out this plan we begin by defining the slightly smaller
rectangle

R′ := {(x, y) : −(1 − ε)X ≤ x ≤ (1 − ε)X, −(1 − ε)Y ≤ y ≤ (1 − ε)Y },

where eventually we will let ε → 0, and then we define the measure

µ(x, y) :=

{

1/4ε2, if − ε ≤ x, y ≤ ε;
0, otherwise.
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Finally we let

f(x, y) := 1R′ ∗ µ(x, y) =

∫

R2

1R′(u, v)µ(x− u, y − v)dudv.

This function has the properties that

supp(f)∗ = supp(1R), and for all (x, y) ∈ R
2, 0 ≤ f(x, y) ≤ 1,

where the ∗ here means we include the boundary of the set. 1

Problem 1. Verify that f̂ ∈ L1(R2) and that

f̂(ξ1, ξ2) =
sin(2πξ1(1 − ε)X) sin(2πξ2(1 − ε)Y ) sin(2πξ1ε) sin(2πξ2ε)

4π4ε2ξ2
1ξ

2
2

The next step is to choose large – but not too large – values for paramters
N1, N2 and then to compute

F = F (N1, N2, t) :=
∑

−N1≤j≤N1

−N2≤k≤N2

f(t + jv1 + kv2),

which will be a lower bound for the number of lattice points in L contained
in the set R − t (the translate of our rectangle R by −t).

Problem 2. Using Theorem 1 show that

F =

∫

R2

e−2πi(ξ·t)f̂(ξ)
sin(2π(N1 + 1/2)(ξ1x1 + ξ2y1))

sin(π(ξ1x1 + ξ2y1))

sin(2π(N2 + 1/2)(ξ1x2 + ξ2y2))

sin(π(ξ1x2 + ξ2y2))
dξ1dξ2.

Clearly we can assume that t ∈ R
2 is contained in a fundamental paral-

lelogram Γ0 for the lattice Zv1 + Zv2.
2 And, it turns out that the above

1Typically one convolves by an even smoother function than µ; alternatively, one can
convolve with µ multiple times – that is, for a certain rectangle R′′ one considers 1R′′ ∗µ∗
µ ∗ · · · ∗ µ.

2Given basis vectors v1, v2 for the lattice, a fundamental parallelogram is the set of all
linear combinations t1v1 + t2v2, where t1, t2 ∈ [0, 1].
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approach is more than adequate to show that F is “large” when t is near
enough to 0; however, having looked ahead I can see that we will need to
smooth out the patch of the lattice we are considering to handle all values
of t in such a fundamental parallelogram. 3 When this is done, it turns out
that we recover the so-called “Poisson Summation Formula” as we will see
below. First, though, it is worth getting a feel for why the above formula
(where the lattice is not smoothed) turns out to be harder to work with. To
this end, we define G(ξ) to be the ratio of products of sines in the integral
in problem 2 above. Note that G(ξ) ≥ 0 for all ξ ∈ R2; and furthermore G
is periodic (the proper term is ‘doubly periodic’) by shifts contained in the
lattice dual to Zv1 + Zv2.

4 In other words, if σ ∈ R2 satisfies σ · v1, σ · v2 ∈ Z

then
G(ξ + σ) = G(ξ).

What this means is that if we let Γ be a fundamental parallelogram for this
dual lattice, then if R ⊆ R2 can be covered by at most K shifts of Γ, then

∫

R

G(ξ)dξ ≤ K

∫

Γ

G(ξ)dξ,

where equality holds if R is exactly a disjoint union of K shits of Γ. This
nicely motivates the following problem:

Problem 3. Show that
∫

Γ

G(ξ)dξ ≪ area(Γ)(log N1)(log N2).

Let me help you out: fix vectors u1, u2 ∈ R2 such that

u1 · v1 = 1 = u2 · v2, and u1 · v2 = 0 = u2 · v1.

Then, the lattice dual to the one spanned by v1 and v2 has basis u1, u2, and
we can choose Γ to be

Γ := {t1u1 + t2u2 : t1, t2 ∈ [0, 1]}.
3By ‘patch’ I mean jv1 + kv2 where |j| ≤ N1 and |k| ≤ N2.
4This dual lattice consists of all σ ∈ R2 satisfying σ · v1, σ · v2 ∈ Z.
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It follows that if u1 = (α1, β1) and u2 = (α2, β2) then by the theory of
integrating factors (and multidimensional integrals) we have

∫

Γ

G(ξ)dξ =

∣

∣

∣

∣

det

(

α1 α2

β1 β2

)
∣

∣

∣

∣

∫

[0,1]2
G(t1α1 + t2α2, t1β1 + t2β2)dt1dt2

= area(Γ)

∫

[0,1]2
G(t1u1 + t2u2)dt1dt2.

We then observe that

G(t1u1 + t2u2) =
sin(2π(N1 + 1/2)t1)

sin(πt1)
· sin(2π(N2 + 1/2)t2)

sin(πt2)
;

Now finish the problem...

As we said before, we would like to be able to work with all translates
t ∈ Γ0, and it turns out that what goes wrong is that mass of G(ξ) isn’t
too strongly concentrated near the lattice points Zu1 + Zu2 – this will mess
up various estimates along the way that I won’t bother to discuss further.
To fix this problem we will consider the following “smoothed version” of our
counting problem: first, we will no longer use N1, N2, but will use a single
parameter N = N1 = N2. Then, we define

F2(N, t) :=

(

2N

N

)−2 ∫

R2

e−2πi(ξ·t)f̂(ξ)(e−πi(ξ·v1) + eπi(ξ·v1))2N(e−πi(ξ·v2) + eπi(ξ·v2))2Ndξ

= 24N

(

2N

N

)−2 ∫

R2

e−2πi(ξ·t)f̂(ξ) cos(π(ξ · v1))
2N cos(π(ξ · v2))

2Ndξ.

It is easy to see that

F2 =
∑

−N≤j,k≤N

λj,kf(t + jv1 + kv2),

where we won’t even bother to say exactly what these λj,k are, except to
say that 0 ≤ λj,k ≤ 1 and that for (j, k) near enough to (0, 0) we will have
λj,k ∼ 1 – so, by letting N → ∞ we will essentially get

∑

j,k∈Z

f(t + jv1 + kv2).
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Notice that, unlike with F = F (N1, N2, t), in defining F2 we started on
the Fourier side and then worked backwards to see what it meant on the
“physical side”. This is a common approach.

Now let us define

G2(ξ) = 24N

(

2N

N

)−2

cos(π(ξ · v1))
2N cos(π(ξ · v2))

2N ,

which is the analogue of the function G(ξ) for this “smoothed lattice”. 5

Consider then the integral
∫

Γ
G2(ξ)dξ. Unlike with

∫

Γ
G(ξ)dξ, here we will

have that most of the integral’s mass comes from those ξ near lattice points:
for example, suppose ξ is near (0, 0) and write ξ1 = c1/

√
N and ξ2 = c2/

√
N .

Then, upon applying a Maclaurin expansion to those cosines above, we get:

G2(ξ) ≪ N(1 − O(c2
1/N))2N(1 − O(c2

2/N))2N = N exp(−O(‖c‖2).

We will get a similar estimate for when ξ is near u1, u2 and u1 + u2, which
are the other lattice points on the boundary of Γ.

What this means is that for large N

∑

j,k∈Z

f(t + jv1 + kv2) ≈
∫

R2

e−2πi(ξ·t)f̂(ξ)G2(ξ)dξ

≈ δ
∑

j,k∈Z

e−2πi((ju1+ku2)·t)f̂(ju1 + ku2), (1)

where δ is basically just the integral of G2 near a lattice point of Zu1 + Zu2

(we are using the fact that G2 is periodic by elements of this lattice) – that
is, we can just let

δ ∼
∫

‖ξ‖<1/N1/3

G2(ξ)dξ,

say. In the following problem you will work out what δ equals (upon letting
N → ∞).

Problem 4. To work out δ, first set t = 0 and let X = Y , and note
that the sum of f(jv1 + kv2) is essentially the number of lattice points of
Zv1 + Zv2 inside the box [−X, X] × [−X, X], at least for ε > 0 small. The

5Note that among its many properties is that if σ ∈ Zu1 +Zu2 then G2(ξ) = G2(ξ+σ).
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number of such lattice points is clearly approximately |2X|2/Vol(Γ0). On
the other hand, as X → ∞ the last sum in (1) tends to be dominated by
the term with (j, k) = (0, 0). And now, putting all this together, show that
δ = 1/Vol(Γ0) = Vol(Γ).

What we have just shown is that

∑

j,k∈Z

f(t + jv1 + kv2) = Vol(Γ0)
−1

∑

j,k∈Z

e−2πi((ju1+ku2)·t)f̂(ju1 + ku2),

which is an exact equation, surprisingly arrived at using only analytic in-
equalities! 6 Another interesting feature is that although we started out
using particular choices v1, v2, u1, u2 for our bases, this equation is really
basis-independent, since it can be interpreted as sums over lattice points in
two different lattices. This is a common feature of many analytic arguments:
one starts non-canonically by choosing a basis, but then in the final analysis
this choice disappears and all that remains are expressions involving global
properties of the lattice (or vector space, or subgroup, or ...).

6And for all I know this is a new proof of the Poisson Summation formula for R2.
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