Lattice points in a rectangle

March 28, 2011

1 Introduction

Suppose that L is a 2D lattice in \mathbb{R}^2 , given by $L = \mathbb{Z}v_1 + \mathbb{Z}v_2$, where $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$ are linearly independent. Furthermore suppose that we have a rectangle R defined by

$$R := \{(x,y) : -X \le x \le X, -Y \le y \le Y\}.$$

In this exercise we will use Fourier analysis to uncover what relationships should exist between v_1, v_2, X , and Y guaranteeing that any shift t + R of R always contains a lattice point.

Basically, what we can try to do is to take the Fourier transform of 1_R (the indicator function for the set R), and then use Fourier inversion to show that for each shift t+L of the lattice L, this shift intersects the set R. Actually, it will not quite be enough to take the Fourier transform of just 1_R , but instead we will need to work with a smoothed version of 1_R in order to make the Fourier transform have the requisite "decay properties". Basically, we will need that the Fourier transform of our function is in L^1 .

It turns out that the dual group $\hat{\mathbb{R}}^n$ is isomorphic to \mathbb{R}^n , and that the additive characters $\chi: \mathbb{R}^n \to \mathbb{C}^*$ take the form $\chi(\vec{x}) = e^{2\pi i(\xi \cdot \vec{x})}$. Fourier transforms are then defined via

$$\hat{f}(\chi) := \int_{\mathbb{R}^n} f(\vec{x}) \overline{\chi(\vec{x})} d\vec{x},$$

provided the integral exists and is finite, which will happen if $f \in L^1(\mathbb{R}^n)$. It is customary to represent this instead by

$$\hat{f}(\xi) := \int_{\mathbb{R}^n} f(\vec{x}) e^{-2\pi i (\xi \cdot \vec{x})} d\vec{x} = \int_{\mathbb{R}^n} f(x_1, ..., x_n) e^{-2\pi i (\xi_1 x_1 + ... + \xi_n x_n)} d\vec{x},$$

where $\xi = (\xi_1, ..., \xi_n)$. We now arrive at the main fact we will need:

Theorem 1 (Fourier Inversion Formula) Suppose $f : \mathbb{R}^n \to \mathbb{C}$ has the property that $f, \hat{f} \in L^1(\mathbb{R}^n)$. Then,

$$f(\vec{x}) = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i (\xi \cdot \vec{x})} d\vec{\xi}.$$

The way we will use this to help in our lattice point problem is as follows: first, note that the indicator function 1_R for our rectangle, although is itself an element of $L^1(\mathbb{R}^2)$, unfortunately has the property that $\hat{1}_R$ is *not* in L^1 : we have that

$$\hat{1}_{R}(\xi_{1}, \xi_{2}) = \int_{-X}^{X} \int_{-Y}^{Y} e^{-2\pi i (\xi_{1}x + \xi_{2}y)} dy dx = \left(\int_{-X}^{X} e^{-2\pi i \xi_{1}x} dx \right) \left(\int_{-Y}^{Y} e^{-2\pi i \xi_{2}y} dy \right) \\
= \frac{\sin(2\pi \xi_{1}X) \sin(2\pi \xi_{2}Y)}{\pi^{2} \xi_{1} \xi_{2}}.$$

And then we will have that this typically has size proportional to $1/|\xi_1\xi_2|$, at least when ξ is not too near 0, which implies that

$$\int_{\mathbb{R}^2 \setminus D} \frac{d\xi_1 d\xi_2}{|\xi_1 \xi_2|} = \infty,$$

where D is any disk enclosing (0,0). This then means that

$$\int_{\mathbb{R}^2} |\hat{1}_R(\xi)| d\xi_1 d\xi_2 = \infty,$$

and therefore $\hat{1}_R \notin L^1(\mathbb{R}^2)$. Fortunately, there is a standard trick for handling this: smooth out the function 1_R a little bit by convolving it with another function. To carry out this plan we begin by defining the slightly smaller rectangle

$$R' \ := \ \{(x,y) \ : \ -(1-\varepsilon)X \leq x \leq (1-\varepsilon)X, \ -(1-\varepsilon)Y \leq y \leq (1-\varepsilon)Y\},$$

where eventually we will let $\varepsilon \to 0$, and then we define the measure

$$\mu(x,y) := \begin{cases} 1/4\varepsilon^2, & \text{if } -\varepsilon \leq x, y \leq \varepsilon; \\ 0, & \text{otherwise.} \end{cases}$$

Finally we let

$$f(x,y) := 1_{R'} * \mu(x,y) = \int_{\mathbb{R}^2} 1_{R'}(u,v)\mu(x-u,y-v)dudv.$$

This function has the properties that

$$\operatorname{supp}(f)^* = \operatorname{supp}(1_R)$$
, and for all $(x, y) \in \mathbb{R}^2$, $0 \le f(x, y) \le 1$,

where the * here means we include the boundary of the set. ¹

Problem 1. Verify that $\hat{f} \in L^1(\mathbb{R}^2)$ and that

$$\hat{f}(\xi_1, \xi_2) = \frac{\sin(2\pi\xi_1(1-\varepsilon)X)\sin(2\pi\xi_2(1-\varepsilon)Y)\sin(2\pi\xi_1\varepsilon)\sin(2\pi\xi_2\varepsilon)}{4\pi^4\varepsilon^2\xi_1^2\xi_2^2}$$

The next step is to choose large – but not too large – values for paramters N_1, N_2 and then to compute

$$F = F(N_1, N_2, t) := \sum_{\substack{-N_1 \le j \le N_1 \\ -N_2 \le k \le N_2}} f(t + jv_1 + kv_2),$$

which will be a lower bound for the number of lattice points in L contained in the set R - t (the translate of our rectangle R by -t).

Problem 2. Using Theorem 1 show that

$$F = \int_{\mathbb{R}^2} e^{-2\pi i(\xi \cdot t)} \hat{f}(\xi) \frac{\sin(2\pi (N_1 + 1/2)(\xi_1 x_1 + \xi_2 y_1))}{\sin(\pi (\xi_1 x_1 + \xi_2 y_1))} \frac{\sin(2\pi (N_2 + 1/2)(\xi_1 x_2 + \xi_2 y_2))}{\sin(\pi (\xi_1 x_2 + \xi_2 y_2))} d\xi_1 d\xi_2.$$

Clearly we can assume that $t \in \mathbb{R}^2$ is contained in a fundamental parallelogram Γ_0 for the lattice $\mathbb{Z}v_1 + \mathbb{Z}v_2$. And, it turns out that the above

Typically one convolves by an even smoother function than μ ; alternatively, one can convolve with μ multiple times – that is, for a certain rectangle R'' one considers $1_{R''} * \mu * \mu * \cdots * \mu$.

²Given basis vectors v_1, v_2 for the lattice, a fundamental parallelogram is the set of all linear combinations $t_1v_1 + t_2v_2$, where $t_1, t_2 \in [0, 1]$.

approach is more than adequate to show that F is "large" when t is near enough to 0; however, having looked ahead I can see that we will need to smooth out the patch of the lattice we are considering to handle all values of t in such a fundamental parallelogram. When this is done, it turns out that we recover the so-called "Poisson Summation Formula" as we will see below. First, though, it is worth getting a feel for why the above formula (where the lattice is not smoothed) turns out to be harder to work with. To this end, we define $G(\xi)$ to be the ratio of products of sines in the integral in problem 2 above. Note that $G(\xi) \geq 0$ for all $\xi \in \mathbb{R}^2$; and furthermore G is periodic (the proper term is 'doubly periodic') by shifts contained in the lattice dual to $\mathbb{Z}v_1 + \mathbb{Z}v_2$. In other words, if $\sigma \in \mathbb{R}^2$ satisfies $\sigma \cdot v_1, \sigma \cdot v_2 \in \mathbb{Z}$ then

$$G(\xi + \sigma) = G(\xi).$$

What this means is that if we let Γ be a fundamental parallelogram for this dual lattice, then if $\mathcal{R} \subseteq \mathbb{R}^2$ can be covered by at most K shifts of Γ , then

$$\int_{\mathcal{R}} G(\xi) d\xi \leq K \int_{\Gamma} G(\xi) d\xi,$$

where equality holds if \mathcal{R} is exactly a disjoint union of K shits of Γ . This nicely motivates the following problem:

Problem 3. Show that

$$\int_{\Gamma} G(\xi) d\xi \ll \operatorname{area}(\Gamma)(\log N_1)(\log N_2).$$

Let me help you out: fix vectors $u_1, u_2 \in \mathbb{R}^2$ such that

$$u_1 \cdot v_1 = 1 = u_2 \cdot v_2$$
, and $u_1 \cdot v_2 = 0 = u_2 \cdot v_1$.

Then, the lattice dual to the one spanned by v_1 and v_2 has basis u_1, u_2 , and we can choose Γ to be

$$\Gamma := \{t_1u_1 + t_2u_2 : t_1, t_2 \in [0, 1]\}.$$

³By 'patch' I mean $jv_1 + kv_2$ where $|j| \le N_1$ and $|k| \le N_2$.

⁴This dual lattice consists of all $\sigma \in \mathbb{R}^2$ satisfying $\sigma \cdot v_1, \sigma \cdot v_2 \in \mathbb{Z}$.

It follows that if $u_1 = (\alpha_1, \beta_1)$ and $u_2 = (\alpha_2, \beta_2)$ then by the theory of integrating factors (and multidimensional integrals) we have

$$\int_{\Gamma} G(\xi) d\xi = \left| \det \begin{pmatrix} \alpha_1 & \alpha_2 \\ \beta_1 & \beta_2 \end{pmatrix} \right| \int_{[0,1]^2} G(t_1 \alpha_1 + t_2 \alpha_2, t_1 \beta_1 + t_2 \beta_2) dt_1 dt_2$$

$$= \operatorname{area}(\Gamma) \int_{[0,1]^2} G(t_1 u_1 + t_2 u_2) dt_1 dt_2.$$

We then observe that

$$G(t_1u_1 + t_2u_2) = \frac{\sin(2\pi(N_1 + 1/2)t_1)}{\sin(\pi t_1)} \cdot \frac{\sin(2\pi(N_2 + 1/2)t_2)}{\sin(\pi t_2)};$$

Now finish the problem...

As we said before, we would like to be able to work with all translates $t \in \Gamma_0$, and it turns out that what goes wrong is that mass of $G(\xi)$ isn't too strongly concentrated near the lattice points $\mathbb{Z}u_1 + \mathbb{Z}u_2$ – this will mess up various estimates along the way that I won't bother to discuss further. To fix this problem we will consider the following "smoothed version" of our counting problem: first, we will no longer use N_1, N_2 , but will use a single parameter $N = N_1 = N_2$. Then, we define

$$F_{2}(N,t) := \binom{2N}{N}^{-2} \int_{\mathbb{R}^{2}} e^{-2\pi i(\xi \cdot t)} \hat{f}(\xi) (e^{-\pi i(\xi \cdot v_{1})} + e^{\pi i(\xi \cdot v_{1})})^{2N} (e^{-\pi i(\xi \cdot v_{2})} + e^{\pi i(\xi \cdot v_{2})})^{2N} d\xi$$
$$= 2^{4N} \binom{2N}{N}^{-2} \int_{\mathbb{R}^{2}} e^{-2\pi i(\xi \cdot t)} \hat{f}(\xi) \cos(\pi(\xi \cdot v_{1}))^{2N} \cos(\pi(\xi \cdot v_{2}))^{2N} d\xi.$$

It is easy to see that

$$F_2 = \sum_{-N \le j, k \le N} \lambda_{j,k} f(t + jv_1 + kv_2),$$

where we won't even bother to say exactly what these $\lambda_{j,k}$ are, except to say that $0 \leq \lambda_{j,k} \leq 1$ and that for (j,k) near enough to (0,0) we will have $\lambda_{j,k} \sim 1$ – so, by letting $N \to \infty$ we will essentially get

$$\sum_{j,k\in\mathbb{Z}} f(t+jv_1+kv_2).$$

Notice that, unlike with $F = F(N_1, N_2, t)$, in defining F_2 we started on the Fourier side and then worked backwards to see what it meant on the "physical side". This is a common approach.

Now let us define

$$G_2(\xi) = 2^{4N} {2N \choose N}^{-2} \cos(\pi(\xi \cdot v_1))^{2N} \cos(\pi(\xi \cdot v_2))^{2N},$$

which is the analogue of the function $G(\xi)$ for this "smoothed lattice". ⁵ Consider then the integral $\int_{\Gamma} G_2(\xi) d\xi$. Unlike with $\int_{\Gamma} G(\xi) d\xi$, here we will have that most of the integral's mass comes from those ξ near lattice points: for example, suppose ξ is near (0,0) and write $\xi_1 = c_1/\sqrt{N}$ and $\xi_2 = c_2/\sqrt{N}$. Then, upon applying a Maclaurin expansion to those cosines above, we get:

$$G_2(\xi) \ll N(1 - O(c_1^2/N))^{2N} (1 - O(c_2^2/N))^{2N} = N \exp(-O(\|c\|^2).$$

We will get a similar estimate for when ξ is near u_1, u_2 and $u_1 + u_2$, which are the other lattice points on the boundary of Γ .

What this means is that for large N

$$\sum_{j,k\in\mathbb{Z}} f(t+jv_1+kv_2) \approx \int_{\mathbb{R}^2} e^{-2\pi i(\xi\cdot t)} \hat{f}(\xi) G_2(\xi) d\xi$$

$$\approx \delta \sum_{j,k\in\mathbb{Z}} e^{-2\pi i((ju_1+ku_2)\cdot t)} \hat{f}(ju_1+ku_2), \quad (1)$$

where δ is basically just the integral of G_2 near a lattice point of $\mathbb{Z}u_1 + \mathbb{Z}u_2$ (we are using the fact that G_2 is periodic by elements of this lattice) – that is, we can just let

$$\delta \sim \int_{\|\xi\| < 1/N^{1/3}} G_2(\xi) d\xi,$$

say. In the following problem you will work out what δ equals (upon letting $N \to \infty$).

Problem 4. To work out δ , first set t=0 and let X=Y, and note that the sum of $f(jv_1+kv_2)$ is essentially the number of lattice points of $\mathbb{Z}v_1+\mathbb{Z}v_2$ inside the box $[-X,X]\times[-X,X]$, at least for $\varepsilon>0$ small. The

⁵Note that among its many properties is that if $\sigma \in \mathbb{Z}u_1 + \mathbb{Z}u_2$ then $G_2(\xi) = G_2(\xi + \sigma)$.

number of such lattice points is clearly approximately $|2X|^2/\text{Vol}(\Gamma_0)$. On the other hand, as $X \to \infty$ the last sum in (1) tends to be dominated by the term with (j,k)=(0,0). And now, putting all this together, show that $\delta=1/\text{Vol}(\Gamma_0)=\text{Vol}(\Gamma)$.

What we have just shown is that

$$\sum_{j,k\in\mathbb{Z}} f(t+jv_1+kv_2) = \operatorname{Vol}(\Gamma_0)^{-1} \sum_{j,k\in\mathbb{Z}} e^{-2\pi i((ju_1+ku_2)\cdot t)} \hat{f}(ju_1+ku_2),$$

which is an exact equation, surprisingly arrived at using only analytic inequalities! ⁶ Another interesting feature is that although we started out using particular choices v_1, v_2, u_1, u_2 for our bases, this equation is really basis-independent, since it can be interpreted as sums over lattice points in two different lattices. This is a common feature of many analytic arguments: one starts non-canonically by choosing a basis, but then in the final analysis this choice disappears and all that remains are expressions involving global properties of the lattice (or vector space, or subgroup, or ...).

⁶And for all I know this is a new proof of the Poisson Summation formula for \mathbb{R}^2 .