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1 Introduction

Here we prove the following theorem:

Theorem 1 Suppose that A ⊆ Fp, and suppose that 2 ≤ |A| < p1/2. Then,

|{a2 + b : a, b ∈ A}| > |A|1+c,

for some constant c > 0.

2 Theorems and Lemmas We Will Need

First, we will require a few basic results on the theory of set addition:

Theorem 2 (Plunnecke-Ruzsa Theorem) Suppose that U is a finite sub-
set of an abelian group G, and suppose that

|U + U | < K|U |.

Then,
|hU − kU | < Kh+k|U |.

Theorem 3 (Gowers-Balog-Szemeredi) Suppose that A is a subset of
an additive group for which we have the energy condition E(A, A) ≥ γm3,
where m = |A|. Then, there exists A′ ⊆ A with |A′| ≥ γ10m such that
|A′ + A′| ≤ γ−10|A′|.
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Lemma 1 (Ruzsa’s Triangle Inequality) Suppose that U, V, W are finite
subsets of an abelian group G. Then,

|U ||V − W | ≤ |U − V ||U − W |.

An almost immediate corollary of this lemma and Plunnecke-Ruzsa is the
following:

Corollary 1 Suppose that |U | ≤ H|V | and that |U + V | ≤ K|U |. Then,

|U + U | . |U |, |U − U | . |U |,

where the notation |A| . |B| means “up to a factor of the form HO(1)KO(1)”
(e.g. |A| ≤ H5K10|B|).

Theorem 4 (Bourgain-Katz-Tao-Konyagin Sum-Product Inequality)
There exists ǫ > 0 so that if U ⊆ Fp, and 2 ≤ |U | < p1/2, then

max(|U + U |, |U · U |) ≥ |U |1+ǫ.

3 Proof of Theorem 1

Suppose that A ⊆ Fp, A0 ≤ |A| = m < p1/2 (A0 is a constant that comes out
of the proof), such that

|{a2 + b : a, b ∈ A}| < |A|1+c = m1+c. (1)

We will show that this is impossible for c > 0 sufficiently small.
To make the exposition easy to follow I will use the . notation appearing

in the above corollary, but here when I write |A| . m I will always mean
that |A| ≤ κ1m

1+κ2c, where κ1, κ2 are constants (κ2 may even be negative,
but κ1 will also be positive).

From (1) and Corollary 1, we deduce that

|A − A| . m, and |A + A| . m. (2)
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From this it easily follows that

E(A, A) & m3.

Now we use an averaging argument to show that there are a lot of pairs
(a, a′) ∈ A×A such that a− a′ lies in a single translate A− b of A: We have
that

1

m

∑

b∈A

|{a, a′ ∈ A : a − a′ ∈ A − b}| =
1

m

∑

a,a′∈A

|{b ∈ A : a − a′ ∈ A − b}|

=
E(A, A)

m
& m2.

Thus, there exists b ∈ A such that there are & m2 pairs (a, a′) ∈ A×A such
that a − a′ ∈ A − b. Call this set of pairs P ; so,

|P | & m2. (3)

Then, for every pair (a, a′) ∈ P we have that a − a′ + b ∈ A.
Now, from Corollary 1 with

B = {a2 : a ∈ A},

we deduce that since

|B + A| . m, and |A| = H|B|, 1 ≤ H ≤ 2,

then
|B − B| . m.

Then, from Theorem 2 (see remarks following the statement of the theo-
rem) we deduce that

|B + B − B − B| . m.

However, since for every (a, a′) ∈ P we have that a − a′ + b ∈ A, then
(a − a′ + b)2 ∈ B, which means that B + B − B − B contains

(a−a′ + b)2−a2− (a′)2 + b2 = −2aa′ +2ab−2a′b+2b2 = −2(a+ b)(a′− b).

Thus,
|{(a + b)(a′ − b) : (a, a′) ∈ P}| . m; (4)
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and, from (2),

|{(a − b) + (a′ − b) : (a, a′) ∈ A × A}| . m. (5)

We now consider the the set

U = {a − b : a ∈ A} ∪ {a + b : a ∈ A}

under multiplication. From (4) and (3) we deduce that the set U has lots of
multiplicative quadruples; in fact,

|{u1, u2, u3, u4 ∈ U : u1u2 = u3u4}| & m3.

Applying the Gowers-Balog-Szemeredi theorem (multiplicative version)
to the set U , we have that there exists a subset

U ′ ⊆ U,

such that
|U ′| & m; (6)

and
|U ′ · U ′| . m. (7)

From (5) we can also dedcue that

|U ′ + U ′| . |A + A| . m (8)

However, if c > 0 is sufficiently small, then (6), (7) and (8) contradict the
Bourgain-Katz-Tao-Konyagin theorem provided |U | is sufficiently large.

We conclude then that for some sufficiently small c > 0,

|{a2 + b : a, b ∈ A}| ≥ |A|1+c,

when |A| > A0. But then we must also get the same result just under the
condition |A| ≥ 2 (by choosing c > 0 even smaller to make the inequality
work for 2 ≤ |A| ≤ A0).
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