The set of $a^{2}+b$ is Large

February 18, 2011

1 Introduction

Here we prove the following theorem:
Theorem 1 Suppose that $A \subseteq \mathbb{F}_{p}$, and suppose that $2 \leq|A|<p^{1 / 2}$. Then,

$$
\left|\left\{a^{2}+b: a, b \in A\right\}\right|>|A|^{1+c}
$$

for some constant $c>0$.

2 Theorems and Lemmas We Will Need

First, we will require a few basic results on the theory of set addition:
Theorem 2 (Plunnecke-Ruzsa Theorem) Suppose that U is a finite subset of an abelian group G, and suppose that

$$
|U+U|<K|U|
$$

Then,

$$
|h U-k U|<K^{h+k}|U| .
$$

Theorem 3 (Gowers-Balog-Szemeredi) Suppose that A is a subset of an additive group for which we have the energy condition $E(A, A) \geq \gamma m^{3}$, where $m=|A|$. Then, there exists $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \gamma^{10} m$ such that $\left|A^{\prime}+A^{\prime}\right| \leq \gamma^{-10}\left|A^{\prime}\right|$.

Lemma 1 (Ruzsa's Triangle Inequality) Suppose that U, V, W are finite subsets of an abelian group G. Then,

$$
|U||V-W| \leq|U-V||U-W|
$$

An almost immediate corollary of this lemma and Plunnecke-Ruzsa is the following:

Corollary 1 Suppose that $|U| \leq H|V|$ and that $|U+V| \leq K|U|$. Then,

$$
|U+U| \lesssim|U|,|U-U| \lesssim|U|,
$$

where the notation $|A| \lesssim|B|$ means "up to a factor of the form $H^{O(1)} K^{O(1)}$ " (e.g. $|A| \leq H^{5} K^{10}|B|$).

Theorem 4 (Bourgain-Katz-Tao-Konyagin Sum-Product Inequality) There exists $\epsilon>0$ so that if $U \subseteq \mathbb{F}_{p}$, and $2 \leq|U|<p^{1 / 2}$, then

$$
\max (|U+U|,|U \cdot U|) \geq|U|^{1+\epsilon}
$$

3 Proof of Theorem 1

Suppose that $A \subseteq \mathbb{F}_{p}, A_{0} \leq|A|=m<p^{1 / 2}\left(A_{0}\right.$ is a constant that comes out of the proof), such that

$$
\begin{equation*}
\left|\left\{a^{2}+b: a, b \in A\right\}\right|<|A|^{1+c}=m^{1+c} . \tag{1}
\end{equation*}
$$

We will show that this is impossible for $c>0$ sufficiently small.
To make the exposition easy to follow I will use the \lesssim notation appearing in the above corollary, but here when I write $|A| \lesssim m$ I will always mean that $|A| \leq \kappa_{1} m^{1+\kappa_{2} c}$, where κ_{1}, κ_{2} are constants (κ_{2} may even be negative, but κ_{1} will also be positive).

From (1) and Corollary 1, we deduce that

$$
\begin{equation*}
|A-A| \lesssim m, \text { and }|A+A| \lesssim m \tag{2}
\end{equation*}
$$

From this it easily follows that

$$
E(A, A) \gtrsim m^{3}
$$

Now we use an averaging argument to show that there are a lot of pairs $\left(a, a^{\prime}\right) \in A \times A$ such that $a-a^{\prime}$ lies in a single translate $A-b$ of A : We have that

$$
\begin{aligned}
\frac{1}{m} \sum_{b \in A}\left|\left\{a, a^{\prime} \in A: a-a^{\prime} \in A-b\right\}\right| & =\frac{1}{m} \sum_{a, a^{\prime} \in A}\left|\left\{b \in A: a-a^{\prime} \in A-b\right\}\right| \\
& =\frac{E(A, A)}{m} \gtrsim m^{2}
\end{aligned}
$$

Thus, there exists $b \in A$ such that there are $\gtrsim m^{2}$ pairs $\left(a, a^{\prime}\right) \in A \times A$ such that $a-a^{\prime} \in A-b$. Call this set of pairs P; so,

$$
\begin{equation*}
|P| \gtrsim m^{2} \tag{3}
\end{equation*}
$$

Then, for every pair $\left(a, a^{\prime}\right) \in P$ we have that $a-a^{\prime}+b \in A$.
Now, from Corollary 1 with

$$
B=\left\{a^{2}: a \in A\right\}
$$

we deduce that since

$$
|B+A| \lesssim m, \text { and }|A|=H|B|, 1 \leq H \leq 2
$$

then

$$
|B-B| \lesssim m
$$

Then, from Theorem 2 (see remarks following the statement of the theorem) we deduce that

$$
|B+B-B-B| \lesssim m
$$

However, since for every $\left(a, a^{\prime}\right) \in P$ we have that $a-a^{\prime}+b \in A$, then $\left(a-a^{\prime}+b\right)^{2} \in B$, which means that $B+B-B-B$ contains
$\left(a-a^{\prime}+b\right)^{2}-a^{2}-\left(a^{\prime}\right)^{2}+b^{2}=-2 a a^{\prime}+2 a b-2 a^{\prime} b+2 b^{2}=-2(a+b)\left(a^{\prime}-b\right)$.
Thus,

$$
\begin{equation*}
\left|\left\{(a+b)\left(a^{\prime}-b\right):\left(a, a^{\prime}\right) \in P\right\}\right| \lesssim m \tag{4}
\end{equation*}
$$

and, from (2),

$$
\begin{equation*}
\left|\left\{(a-b)+\left(a^{\prime}-b\right):\left(a, a^{\prime}\right) \in A \times A\right\}\right| \lesssim m \tag{5}
\end{equation*}
$$

We now consider the the set

$$
U=\{a-b: a \in A\} \cup\{a+b: a \in A\}
$$

under multiplication. From (4) and (3) we deduce that the set U has lots of multiplicative quadruples; in fact,

$$
\left|\left\{u_{1}, u_{2}, u_{3}, u_{4} \in U: u_{1} u_{2}=u_{3} u_{4}\right\}\right| \gtrsim m^{3}
$$

Applying the Gowers-Balog-Szemeredi theorem (multiplicative version) to the set U, we have that there exists a subset

$$
U^{\prime} \subseteq U
$$

such that

$$
\begin{equation*}
\left|U^{\prime}\right| \gtrsim m \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|U^{\prime} \cdot U^{\prime}\right| \lesssim m \tag{7}
\end{equation*}
$$

From (5) we can also dedcue that

$$
\begin{equation*}
\left|U^{\prime}+U^{\prime}\right| \lesssim|A+A| \lesssim m \tag{8}
\end{equation*}
$$

However, if $c>0$ is sufficiently small, then (6), (7) and (8) contradict the Bourgain-Katz-Tao-Konyagin theorem provided $|U|$ is sufficiently large.

We conclude then that for some sufficiently small $c>0$,

$$
\left|\left\{a^{2}+b: a, b \in A\right\}\right| \geq|A|^{1+c}
$$

when $|A|>A_{0}$. But then we must also get the same result just under the condition $|A| \geq 2$ (by choosing $c>0$ even smaller to make the inequality work for $2 \leq|A| \leq A_{0}$).

