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1 Introduction

Here we prove the following theorem:

Theorem 1 Suppose that A C F,, and suppose that 2 < |A| < p*/2. Then,
Ha* +b : a,be A} > A,

for some constant ¢ > 0.

2 Theorems and Lemmas We Will Need

First, we will require a few basic results on the theory of set addition:

Theorem 2 (Plunnecke-Ruzsa Theorem) Suppose that U is a finite sub-
set of an abelian group G, and suppose that

U +U| < K|U.

Then,
\WU — kU| < K"™|U|.

Theorem 3 (Gowers-Balog-Szemeredi) Suppose that A is a subset of
an additive group for which we have the energy condition E(A, A) > ym?,
where m = |A|. Then, there exists A" C A with |A'| > +'%m such that
A+ A <4704,



Lemma 1 (Ruzsa’s Triangle Inequality) Suppose that U, V, W are finite
subsets of an abelian group G. Then,

UV -w| < [U-VI|U-W|.
An almost immediate corollary of this lemma and Plunnecke-Ruzsa is the
following:
Corollary 1 Suppose that |U| < H|V| and that |U + V| < K|U|. Then,
U+UlS UL [U=Ul S U

where the notation |A| < |B| means “up to a factor of the form HOWKOW”
(e.g. |A| < HSK'|B|).

Theorem 4 (Bourgain-Katz-Tao-Konyagin Sum-Product Inequality)
There ezists € > 0 so that if U C F,, and 2 < |U| < p'/2, then

max(|U + U|,|U-U|) > |U**.

3 Proof of Theorem 1

Suppose that A C F,, Ag < |A| =m < p/? (A is a constant that comes out
of the proof), such that

{a>+b : abe A} < |A]'* = ml*e. (1)

We will show that this is impossible for ¢ > 0 sufficiently small.

To make the exposition easy to follow I will use the < notation appearing
in the above corollary, but here when I write |A] < m I will always mean
that |A| < kym!t"2¢ where ki, ko are constants (ko may even be negative,
but x; will also be positive).

From (1) and Corollary 1, we deduce that

|A— Al < m, and |[A+ A] < m. (2)



From this it easily follows that
E(AA) 2 m®.

Now we use an averaging argument to show that there are a lot of pairs
(a,a’) € A x A such that a —a’ lies in a single translate A —b of A: We have
that

1 / i / _ 1 . _ A _
EZHa,aeA.a—aeA—bH - aZ|{beA.a d e A—b}
beA a,a’ €A
— E(AvA) Z m2‘
m

Thus, there exists b € A such that there are 2> m? pairs (a,a’) € A x A such
that a —a’ € A —b. Call this set of pairs P; so,

Pl 2 m?. (3)

Then, for every pair (a,a’) € P we have that a —d’ +b € A.
Now, from Corollary 1 with

B = {a® : ac€ A},
we deduce that since
|B+ Al < m, and |A| = H|B|, 1 < H <2,

then
|B—B| < m.

Then, from Theorem 2 (see remarks following the statement of the theo-
rem) we deduce that
|B+B—B—B| < m.

However, since for every (a,a’) € P we have that a — a' + b € A, then
(a — a’' + b)? € B, which means that B + B — B — B contains

(a—d +b)*—a*—(d')?+b* = —2aa'+2ab—2d'b+2b> = —2(a+b)(a’ —b).

Thus,
{(a+b)(a"=b) : (a,a') € P} S m (4)
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and, from (2),

H(a=0b)+ (a'=b) : (a,d') € Ax A} < m. (5)

We now consider the the set
U={a—-b:acAtU{a+b : ac A}

under multiplication. From (4) and (3) we deduce that the set U has lots of
multiplicative quadruples; in fact,

{ur,ug, us,ug €U ¢ wyug = ugug}| 2 m’.

Applying the Gowers-Balog-Szemeredi theorem (multiplicative version)
to the set U, we have that there exists a subset

U c U,
such that
'l z m; (6)
and
\u'-v < om. (7)

From (5) we can also dedcue that
U'+U'| < JA+A < m (8)

However, if ¢ > 0 is sufficiently small, then (6), (7) and (8) contradict the
Bourgain-Katz-Tao-Konyagin theorem provided |U] is sufficiently large.
We conclude then that for some sufficiently small ¢ > 0,

{a® +b : abe A} > JA]'F,

when |A| > Ap. But then we must also get the same result just under the
condition |A| > 2 (by choosing ¢ > 0 even smaller to make the inequality
work for 2 < |A] < Ap).



