The group A_5 is simple

February 26, 2008

1 Introduction

Recall that a group G is said to be simple if

$$H \triangleleft G \implies H = \{e\} \text{ or } H = G.$$

That is, G has only the trivial normal subgroups $\{e\}$ and G itself.

Clearly, S_n , $n \ge 3$, is not simple, as

 $A_n \triangleleft S_n;$

but for $n \ge 5$ it turns out that A_n is simple. We will prove this here only for the case n = 5.

To do this, we will assume knowledge of the following fact, which is an assigned homework problem:

Fact. A_n , $n \ge 3$, is generated by the 3-cycles $(a \ b \ c)$. That is to say, every $\sigma \in A_n$, $n \ge 3$, can be written as

$$\sigma = C_1 C_2 \cdots C_k,$$

where each C_i is one of these 3-cycles. Note that as a 3-cycle is an even permutation (e.g. $(1\ 2\ 3) = (1\ 3)(1\ 2)$ is the product of 2 transpositions), any such product $C_1 \cdots C_k$ is automatically even.

2 Look at cycle structure

Suppose that

$$N \triangleleft A_5, \ N \neq \{e\}.$$

We will show that $N = A_5$, which will prove that A_5 is simple, as N is arbitrary.

First, from the facts that $N \neq \{e\}$ and that N is a subset of A_5 , we conclude that it contains a non-trivial even permutation σ . Consider now the disjoint cycle decomposition for σ . Clearly, the cycle structure is one of the following three types:

- $\sigma = (a \ b \ c \ d \ e); \text{ or,}$
- $\sigma = (a \ b)(c \ d); \text{ or,}$
- $\sigma = (a \ b \ c).$

2.1 What if $\sigma = (a \ b \ c \ d \ e)$?

Let us consider the first case, which is where σ is the indicated 5-cycle. Let

$$\alpha = (a \ b)(c \ d) \in A_5.$$

Then,

$$\sigma' := \alpha \sigma \alpha^{-1} = (a \ b)(c \ d)(a \ b \ c \ d \ e)(a \ b)(c \ d) = (a \ d \ c \ e \ b).$$

Since N is assumed to be normal in A_5 , it must contain this element σ' ¹.

But since N is a subgroup of A_5 , it must also contain the product

$$\sigma \sigma' = (a \ b \ c \ d \ e)(a \ d \ c \ e \ b) = (a \ e \ c).$$

So, N contains a 3-cycle $(a \ e \ c)$, and therefore we have reduced the first bullet above to the case of where N contains a 3-cycle.

¹Because, $H \triangleleft G \iff$ for every $h \in H$ and every $g \in G$ we have that $ghg^{-1} \in H$.

2.2 What if $\sigma = (a \ b)(c \ d)$?

As in the case of when σ was a 5-cycle, we let

$$\beta = (a \ b \ e),$$

and then define

$$\sigma' := \beta \sigma \beta^{-1} = (a \ b \ e)(a \ b)(c \ d)(a \ e \ b) = (b \ e)(c \ d).$$

As before, we note that $N \triangleleft A_5$ implies $\sigma' \in N$; furthermore, $\sigma \sigma' \in N$, which therefore means that N contains

$$\sigma\sigma' = (a \ b)(c \ d)(b \ e)(c \ d) = (a \ b \ e).$$

Again, we see that N contains a 3-cycle.

2.3 What if $\sigma = (a \ b \ c)$?

Our goal is to show that if N contains a single 3-cycle, then it contains all other 3-cycles. Since A_n , $n \ge 3$, is generated by the 3-cycles, this would mean that N contains all the elements of A_5 , whence

$$N = A_5.$$

Suppose that σ' is any other 3-cycle. Then, there must be at least one number in common in the cycles σ and σ' (both cycles "eat up" three numbers from the list 1,2,3,4,5, so they must contain a common number); for example, if a and c are common to the cycles, then σ' might look like

$$\sigma' = (a \ c \ d) = (c \ d \ a).$$

If this is the case, then we need to show that there is a $\gamma \in A_5$ such that

$$\sigma' = \gamma \sigma \gamma^{-1}.$$

In this particular case,

$$\gamma = (a \ c)(b \ d)$$

does the trick.

This σ' was a typical example of those cycles having two numbers in common with σ . A case where it has only one number in common would be

$$\sigma' = (a \ d \ e);$$

and, in this case,

$$\sigma' = \gamma \sigma \gamma^{-1}$$
, with $\gamma = (b \ d)(c \ e)$.

I'll leave it to you to see how to handle the case when σ and σ' have three numbers in common (or, if you are clever, perhaps you can see how to handle all three cases at once – one, two or three numbers in common).