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The Balog-Szemerédi-Gowers theorem has a rich history, and is a very
useful tool in additive combinatorics. It began with a paper by Balog and
Szemerédi [2], and then was refined by Gowers [3] to the following basic result
(actually, Gowers proved somewhat more than we state here):

Theorem 1 There exists an absolute constant κ > 0 such that the following

holds for all finite subsets X and Y of size n > n0 of an abelian group:

Suppose that there are at least Cn3, C > 0, solutions to x1 + y1 = x2 + y2,

xi ∈ X and yi ∈ Y . Then X contains a subset X ′, of size at least Cκn, such

that

|X ′ + X ′| ≤ C−κn.

Sudakov, Szemerédi and Vu [6] proved a refinement of this theorem (Balog
[1] independently obtained a similar result). Before we state it, we need to
introduce some notation: Suppose G is a graph connecting two vertex sets
A and B, which we think of as two subsets of some additive group. We then

use the notation A
G
+ B to denote the set of all sums a + b, where (a, b) is an

edge of the graph G. Now we can state the theorem of Sudakov, Szemerédi
and Vu:

Theorem 2 Let n, C, K be positive numbers, and let A and B be two sets

of n integers. Suppose that there is a bipartite graph G(A, B, E) with at least

n2/K edges and |A
G
+ B| ≤ Cn. Then one can find a subset A′ ⊂ A and

a subset B′ ⊂ B such that |A′| ≥ n/16K2, |B′| ≥ n/4K and |A′ + B′| ≤
212C3K5n.
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Remark. It is not difficult to show that this theorem, along with some
lemmas and theorems of Ruzsa (the Ruzsa triangle inequality [7], and the
Ruzsa-Plünnecke Theorem [4]), implies that we may take κ < 20 in Theorem
1.

In the same paper, Sudakov, Szemerédi and Vu [6, Theorem 4.3] proved
the following powerful hypergraph version of the Balog-Szemerédi-Gowers
Theorem:

Theorem 3 For any positive integer k, there are polynomials fk(x, y) and

gk(x, y) with degrees and coefficients depending only on k, such that the fol-

lowing holds. Let n, C, K be positive numbers. If A1, ..., Ak are sets of n pos-

itive integers, H(A1, ..., Ak, E) is the k-partite, k-uniform hypergraph with at

least nk/K edges, and |
H
⊕1≤i≤k Ai| ≤ Cn, then one can find subsets A′

i ⊂ Ai

such that

• |A′
i| ≥ n/fk(C, K) for all 1 ≤ i ≤ k;

• |A′
1 + · · ·+ A′

k| ≤ gk(C, K)n.

The notation
H
⊕ means that the sum is restricted to the hypergraph H .

Beautiful and useful as it is, it would be nice if one had some control on
the degrees of these polynomials f and g. And, it would be good to be able
to control the rate of growth of sums A′

1 + · · ·+ A′
ℓ, where ℓ is much smaller

than k – it would be good to be able to bound the size of this sum from
above by

C1+εKdkn, (1)

where dk depends only on k. Perhaps such a bound can be developed by
modifying the proof of Sudakov, Szemerédi and Vu (though we were not
able to see how to do this); however, in the present paper, we take a different
tack, and produce an alternate proof of a related hypergraph Balog-Szmeredi-
Gowers theorem, where an upper bound such as (1) will be implicit, though
only for the case where A1 = · · · = Ak. In our proof, we will use some of the
same standard tricks as Sudakov, Szemerédi and Vu do in their proof.

The notation we use to describe this theorem, and its proof, will be some-
what different from that used by Sudakov, Szemerédi and Vu. Furthermore,
we will not attempt here to give the most general formulation of the theorem.
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Theorem 4 For every 0 < ε < 1/2 and c > 1, there exists δ > 0, such that

the following holds for all k sufficiently large, and all sufficiently large finite

subsets A of an additive abelian group: suppose that

S ⊆ A×A× · · · ×A = Ak,

and let

Σ(S) := {a1 + · · ·+ ak : (a1, ..., ak) ∈ S}.
If

|S| ≥ |A|k−δ, and |Σ(S)| < |A|c,
then there exists

A′ ⊆ A, |A′| ≥ |A|1−ε,

such that

|ℓA′| = |A′ + · · ·+ A′| ≤ |A′|c(1+εℓ).

To appreciate the strength of the conclusion here, note that the exponent
c(1 + εℓ) appearing in the last displayed equation is not much larger than
the exponent c (at least for ε small enough relative to ℓ) appearing in the
assumption |Σ(S)| < |A|c. Furthermore, this is about the best we could hope
to prove, apart from that term εℓ in the exponent c(1 + εℓ) because of the
following example: take A to be a Sidon subset of {1, 2, ..., n} (recall that a
Sidon set is one having no solutions a + b = c + d except trivial ones where
{a, b} = {c, d}) having size ∼ √n, which is known to exist from the work of
Singer [5]. Then, if we just set S = Ak we will have that

|A|2 ≪k |Σ(S)| ≪k |A|2,

which means that S satisfies the hypotheses of the above theorem with c ∼ 2
(the larger n is relative to k, the closer to 2 we can take c to be). Now,
regardless of what subset A′ ⊆ A we choose, it too must be a Sidon set, and
therefore will satisfy |A′ + A′| ≫ |A′|2, and more generally,

|ℓA′| ≫ |A′|2.

We can likewise develop extremal examples showing that Theorem 4 is
sharp for higher values of c by using generalized Sidon sets that avoid non-
trivial solutions to x1 + · · · + xk = y1 + · · ·+ yk, where k ≥ 3 is some fixed
integer.
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1 Proof of Theorem 4

1.1 Notation and basic assumptions

It will be advantageous to describe the proof in terms of strings. So, the
set S ⊆ Ak will be thought of as a collection of strings x1x2 · · ·xk (where
xi ∈ A) of length k.

Often, we split these strings up into substrings; for example, the string
x = x1 · · ·xk can be written as a product of a “left substring ℓ of length
k/2” (assume k is even) and a “right substring r of length k/2”. So, x = ℓr.

We may assume that k = 2n, since if this is not the case, then we let k′

be the largest power of 2 of size at most k, and proceed as follows: Given a
string x1 · · ·xk in S, we write it as a product ℓxrx, where

ℓx := x1 · · ·xk′ and rx := xk′+1 · · ·xk.

Now, for some string y we will have that rx = y for at least |S|/|A|k−k′

choices
for x ∈ S. Letting S ′ denote the set of all strings ℓx with rx = y, we will
have

|S ′| ≥ |A|k′−δ,

and clearly

|Σ(S ′)| ≤ |Σ({ℓxy : x ∈ S ′})| ≤ |Σ(S)| < |A|c.

So, we could just assume that our k had this value k′ all along (remember,
we get to choose k to be as large as needed to get the desired conclusion).

1.2 Lengths of iterations and the choice of δ and k

Our proof will be highly iterative, and will produce a sequence of sets

S0 := S, S1, S2, ..., each Sm ⊆ Akm ,

until one is found that has certain nice properties.
We will think of this process in terms of ‘replacing’ the set Sm ⊆ Akm

with a set Sm+1 ⊆ Akm+1 that satisfies ‘better’ inequalities, specifically

|Sm+1| ≥ |A|km+1−δm+1 , and |A|1−δm+1 ≤ |Σ(Sm+1)| ≤ |Σ(Sm)|1−ε/400c,
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where each δi ≤ 5iδ. The lower bound on |Σ(Sm+1)| comes from the fact
that each element of Σ(Sm+1) can correspond to at most |A|km+1−1 strings of
Sm+1, along with the lower bound on |Sm+1|.

We now will show that the number of such iterations we can take will be
bounded from above in terms of ε and c for δ > 0 sufficiently small: first note
that |Σ(S0)| = |Σ(S)| < |A|c, by hypothesis. Next, observe that for δ > 0
small enough in terms of m we have the lower bound |Σ(Sm)| ≥ |A|1−δm >
|A|1/2. And we have a companion upper bound

|Σ(Sm−1)|1−ε/400c ≤ |Σ(Sm−2)|(1−ε/400c)2 ≤ · · · ≤ |Σ(S0)|(1−ε/400c)m

< |A|c(1−ε/400c)m

.

Putting the upper and lower bounds together we have that for δ > 0 small
enough in terms of ε and c, the iteration process can continue only so long as
1/2 < c(1− ε/400c)m, which gives the following upper bound on the number
of iterations:

m < log(1/2c)/ log(1− ε/400c).

Of course, there is also the issue of whether we “run out of dimensions”
before performing this many iterations, because at each step the km+1 ≤ km;
in fact, we do not run out, since k0 = k and since at each step km+1 ≥ km/2,
meaning that so long as the initial value of k is large enough in terms of c
and ε we will certainly have enough dimensions to play with to run though
⌊log(1/2c)/ log(1− ε/400c)⌋ iterations.

Since our theorem is a qualitative result, in that it does not even attempt
to explain how δ or k depends on ε and c, there is no need to be more
precise about just how small to take δ or how large to take k, in order for
our iteration process to terminate and prove our theorem.

We will now describe the iterative process, but before we do, we initialize
parameters as follows:

S0 := S, k0 := k, δ0 := δ, and set m := 0.

1.3 The iteration part of the argument

Given a string x of length km/2, we let Rm(x) denote the set of all strings y
of length km/2 such that

xy ∈ Sm.

We analogously define Lm(y) to be those strings x such that xy ∈ Sm.
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We will now select an x, and therefore Rm(x), very carefully, so that it
satisfies certain useful properties: We begin with the inequality

∑

x

|Rm(x)| = |Sm| ≥ |A|km−δm .

We now apply the following lemma.

Lemma 1 Suppose that V is a set of n elements, and suppose that

U1, U2, ..., Ur ⊆ V

satisfy
r
∑

i=1

|Ui| ≥ rn1−δ.

Then, there exists 1 ≤ j ≤ r such that

∑

1≤i≤r

|Ui ∩ Uj| ≥ rn1−2δ.

Proof of the lemma. Let r(v) denote the number of sets Ui that contain
the element v ∈ V . One easily sees that

∑

v∈V

r(v)2 =
∑

1≤i,j≤r

|Ui ∩ Uj |,

and
∑

v∈V

r(v) =

r
∑

i=1

|Ui|.

So, the Cauchy-Schwarz inequality tells us that

∑

1≤i,j≤r

|Ui ∩ Uj | ≥
(

r
∑

i=1

|Ui|
)2

|V |−1 ≥ r2n1−2δ.

Picking out any value j making the sum over i on the corresponding terms
on the left-hand-side maximal, we see that

r
∑

i=1

|Ui ∩ Uj| ≥ rn1−2δ,

6



as claimed. �

From this lemma we easily deduce that there exists x such that

∑

y

|Rm(x) ∩ Rm(y)| ≥ |A|km−2δm .

Next, we let
Sm+1 := {yz ∈ Sm : z ∈ Rm(x)}, (2)

and we observe that

|Sm+1| =
∑

y

|Rm(x) ∩Rm(y)| ≥ |A|km−2δm ;

so, Sm+1 is not too much smaller than Sm.
We now let

δm+1 := 2δm, and km+1 := km,

and observe that Sm+1 satisfies

|Sm+1| ≥ |A|km+1−δm+1 ,

and we in addition have that every element of Sm+1 can be expressed as yz,
where z ∈ Rm(x) = Rm+1(x).

Now suppose that there is a string y of length km+1/2 such that

|Rm+1(y)| ≥ |A|km+1/2−2δm+1 ,

and such that
|Σ(Rm+1(y))| ≤ |Σ(Sm+1)|1−ε/400c.

If this occurs, then we let

Sm+2 := Rm+1(y), km+2 := km+1/2, δm+2 := 2δm+1.

In addition, we set
m ← m + 2,

and then we start back at the very beginning of subsection 1.3.
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1.4 The sets H ′ and H ′′

When we come out of the iteration loops from the previous subsection, we
finish with a set Sm having a number of highly useful properties, among
them:

• |Sm| ≥ |A|km−δm ;

• For a particular string x of length km/2, for all y we have Rm(y) ⊆
Rm(x); and,

• If we let H denote those strings h of length km/2 such that

|Rm(h)| ≥ |A|km/2−2δm ,

then for every such h we will have that

|Σ(Sm)|1−ε/400c < |Σ(Rm(h))| ≤ |Σ(Rm(x))| ≤ |Σ(Sm)|. (3)

One can easily show, using the lower bound for |Sm|, that for |A| sufficiently
large,

|H| > |A|km/2−2δm .

Since
∑

z∈Rm(x)

|{h ∈ H : hz ∈ Sm}| ≥ |H| · |A|km/2−2δm ,

we deduce that there exists z ∈ Rm(x) such that there are at least

|H| · |A|−2δm ≥ |A|km/2−4δm

vectors h ∈ H satisfying
hz ∈ Sm. (4)

Fix one of these z, and let
H ′ ⊆ H

denote all those h ∈ H such that (4) holds. Note that

|H ′| ≥ |A|km/2−4δm . (5)
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Next, let H ′′ ⊆ H ′ denote those h ∈ H ′ such that there are at least

|H ′| · |Σ(H ′)|−1/2 (6)

other h′ ∈ H ′ satisfying Σ(h′) = Σ(h). We have that

|H ′ \H ′′| < |Σ(H ′)|(|H ′| · |Σ(H ′)|−1/2) = |H ′|/2

So,
|H ′′| > |H ′|/2 ≥ |A|km/2−5δm , (7)

for |A| sufficiently large.
We also note that

|Σ(H ′′)| ≤ |Σ(H ′)| = |Σ({hz : h ∈ H ′})| ≤ |Σ(Sm)|.

This is one of the places where it was essential to have that z ∈ Rm(h) for
all h ∈ H ′.

Now suppose that, in fact,

|Σ(H ′′)| ≤ |Σ(Sm)|1−ε/400c. (8)

Then set
Sm+1 := H ′′, km+1 := km/2, δm+1 := 5δm,

update m to
m ← m + 1

and repeat the iteration process again, starting in subsection 1.3.

On the other hand, if (8) does not hold, then we will have that

|Σ(Sm)|1−ε/400c < |Σ(H ′′)| ≤ |Σ(H ′)| ≤ |Σ(Sm)|. (9)

1.5 The final leg of the proof

First, we will produce a lower bound on the number of quadruples

σ1, σ2 ∈ Σ(H ′′), and σ3, σ4 ∈ Σ(Rm(x)), (10)

satisfying
σ1 + σ3 = σ2 + σ4. (11)
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To do this, we begin by noting that the number of quadruples we aim to
count is at least

Q0 :=
∑

s∈Σ(Sm)

|{σ ∈ Σ(H ′′), σ′ ∈ Σ(Rm(x)) : σ + σ′ = s}|2;

and the number of quadruples σ1, σ2, σ3, σ4 satisfying σ1+σ3, σ2+σ4 ∈ Σ(Sm),
without regard to whether they satisfy (11), is

Q1 :=





∑

s∈Σ(Sm)

|{σ ∈ Σ(H ′′), σ′ ∈ Σ(Rm(x)) : σ + σ′ = s}|





2

≥ |Σ(H ′′)|2 min
h∈H′′

|Σ(Rm(h))|2.

From the Cauchy-Schwarz inequality we have that

Q0 ≥ Q1/|Σ(Sm)| ≥ |Σ(H ′′)|2 min
h∈H′′

|Σ(Rm(h))|2/|Σ(Sm)|.

To bound this from below, we apply (3) and (9), and deduce

Q0 ≥ |Σ(Sm)|3−ε/100c.

Now we set

X0 := Σ(H ′′), and Y0 := Σ(Rm(x)).

We cannot directly apply Theorem 1 to X0 and Y0, because |X0| and |Y0|
may not be equal; however, they nearly are, since both are bounded from
below by |Σ(Sm)|1−ε/400c and from above by |Σ(Sm)|. We now describe how
to work around this issue: let us suppose without loss of generality that
|X0| ≤ |Y0|. Partition Y0 into q ≤ |Σ(Sm)|ε/400c disjoint subsets (any way you
wish) Y0,1, ..., Y0,q where all but the last one have size |X0|, while the last set
will have size at most |X0|. For a pair of sets U, V letting E(U, V ) denote
the number of quadruples (u, u′, v, v′) ∈ U2 × V 2 satisfying u + v = u′ + v′,
we find that

q
∑

i=1

E(X0, Y0,i) = E(X0, Y0) ≥ Q0 ≥ |Σ(Sm)|3−ε/100c.
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Pick out the set Y0,i in this sum that maximizes E(X0, Y0,i), and note that

E(X0, Y0,i) ≥ q−1|Σ(Sm)|3−ε/100c ≥ |Σ(Sm)|3−ε/80c.

We then set X = X0, and if it so happens that i < q then we set Y = Y0,i;
otherwise, if i = q, we set Y be the union of Y0,i with any collection of
|X0|−|Y0,i| elements from Y0,1∪Y0,2∪· · ·∪Y0,q−1, so as to make |Y | = |X0| =
|X|. Note that in either case we will arrive at a pair of sets X, Y satisfying

|Σ(Sm)|1−ε/400c ≤ |X| = |Y | ≤ |Σ(Sm)|, and E(X, Y ) ≥ |Σ(Sm)|3−ε/80c,
(12)

where the first inequalities follow from (3) and (9).
Following the comment after Theorem 2, we have that there exists Σ :=

X ′ ⊆ X ⊆ Σ(H ′′) satisfying |Σ| ≥ |X|1−ε/2c, such that

|Σ + Σ| ≤ |Σ|1+ε/2c. (13)

Let H ′′′ denote the set of all h ∈ H ′′, such that Σ(h) ∈ Σ. By (5), (6),
and (12), we have that

|H ′′′| ≥ |Σ|(|H ′| · |Σ(H ′)|−1/2)

≥ |X|1−ε/2c|H ′| · |Σ(Sm)|−1/2

≥ |X|1−ε/2c|X|−1/(1−ε/400c)|H ′|/2

≥ |X|−ε/c|H ′|
≥ |A|km/2−4δm−ε,

for |A| sufficiently large.
By simple averaging, there is some vector w ∈ Akm/2−1, such that there

are at least |A|1−4δm−ε vectors h ∈ H ′′′ whose last km/2− 1 coordinates are
the vector w. The upshot of this is that if we let

A′ := {a ∈ A : aw ∈ H ′′′},

then
|A′| ≥ |A|1−4δm−ε, (14)

and
A′ + A′ + 2Σ(w) ⊆ Σ(H ′′′) + Σ(H ′′′) = Σ + Σ.
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Now we apply a weak form of the Ruzsa-Plünnecke Theorem [4], given as
follows:

Theorem 5 Suppose that X is some finite subset of an additive abelian

group, such that

|X + X| ≤ C|X|.
Then, we have that

|kX| = |X + X + · · ·+ X| ≤ Ck|X|.

Using
X := Σ, and C := |Σ|ε/2c,

we deduce that for ℓ even,

|ℓA′| ≤ |ℓΣ| ≤ |Σ|1+εℓ/2c ≤ |A|c+εℓ ≤ |A′|(c+εℓ)/(1−4δm−ε)

By selecting δ > 0 small enough (and therefore δm > 0 small enough), relative
to ε > 0, we can ensure that for ε < 1/2,

|ℓA′| ≤ |A′|c(1+2εℓ).

Of course, when 1/2 ≤ ε < 1 the inequality is trivial, as c > 1. Clearly, on
rescaling ε appropriately, our theorem is proved.
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